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What is a Recurrent Neural Network?
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Introduction

What is Recurrent Neural Networks (RNN)?

A deep learning model used for:
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Language Modeling, ...

A vanilla RNN



Introduction
What is Recurrent Neural Networks (RNN)?

A vanilla RNN takes an input x(), and update its hidden state h(*~V) using:

h® = tanh (WhED 4+ yx©)
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A 2-layer RNN
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What has the RNN learned from data?
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Motivation
What has the RNN learned from data?

A. map the value of a single hidden unit on data (Karpathy A. et al., 2015)

EBhEcirossing of the Berezina lies in the fact
i’-¥ ably proved the fallacy of all the plans for

- Kﬁtuzov and the general mass of the army
“w;V” silply to follow the enemy up. The French crowd f
increasing speed and all its energy was directed to

A unit sensitive to position in a line.

Flﬂ Faudit wmpack_string(welid *mMbufp, silize_ 't MrEmain, s@ize_t Lem)

A lot more units have no clear meanings.
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Motivation

What has the RNN learned from data?

B. matrix plots (Li J. et. al., 2016)
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i hate the movie though the plot is interesting
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Each column represents the
value of the hidden state vector
when reads a input word

Scalability!
Machine Translation: 4-layer, 1000 units/layer
(Sutskever I. et al., 2014)

Language Modeling: 2-layer, 1500 units/layer
(Zaremba et al., 2015)



| Our Solution - RNNVis
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Our Solution

Explaining individual hidden units <
Bi-graph and co-clustering

Sequence evaluation
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Solution

Explaining an individual hidden unit using its most salient words

How to define salient?

Model’s response to a word w at step t: the update of hidden state AR(®)
AR® = [an(|,i=1,...,n,
Larger abs(Ahl@) Implies that the word w is more salient to unit i.
Since Ahl@ can vary given the same word w, we use the expectation:
E(AR®D | w, = w)

Can be estimated by running the model on dataset and take the mean.
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Solution

Explaining an individual hidden unit using its most salient words

words
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Top 4 positive/negative salient words of unit 36 in
an RNN (GRU) trained on Yelp review data.
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Solution

Explaining an individual hidden unit using its most salient words

response
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Distribution of model’s response given the word “he”.
Units reordered according to the mean. (an LSTM with 600 units)
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Solution

Explaining an individual hidden unit using its most salient words

Investigating one unit/word at a time...

P: Too much user burden!

S: An overview for easier exploration

WHKUST

13



WHKUST

Solution

Explaining individual hidden units
Bi-graph and co-clustering <

Sequence evaluation
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Solution

Bi-graph Formulation

Hidden Units

Words

WHKUST
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Bi-graph Formulation

Solution
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Co-clustering

Solution
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Spectral co-clustering (Dhillon I. S., 2001)
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Solution
Co-clustering — Edge Aggregation

Hidden Units

Color: sign of the average edge weight
Width: scale of the average edge weight
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Solution

Co-clustering - Visualization

Hidden Units -
Color: each unit’s salience
to the selected word
Words - . —

Hidden Units Clusters
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Solution

Explaining individual hidden units
Bi-graph and co-clustering

Sequence evaluation ¢
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Solution

Glyph design for evaluating sentences

Each glyph summarizes the dynamics of hidden unit clusters when reading a word

Each bar represents the average
scale of the value in a hidden

units cluster 'FI__l '

/ The ratio of preserved value

Decreased value

More positive value are preserved

Current value _
More negative value are preserved

Update towards positive

Increased value
Update towards negative
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Case Studies

How do RNNs handle sentiments?

The language of Shakespeare

<
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Case Study — Sentiment Analysis

Each unit has two sides
Single-layer GRU with 50 hidden units (cells), trained on Yelp review data
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Case Study — Sentiment Analysis

RNNs can learn to handle the context
Single-layer GRU with 50 hidden units (cells), trained on Yelp review data

0.4 A 4 4 0.6 h A ¢
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Update towards negative Sentence A: | love the food, though the staff is not helpful

MHKUST Sentence B: The staff is not helpful, though | love the food



Case Study — Sentiment Analysis

Clues for the problem
Single-layer GRU with 50 hidden units (cells), trained on Yelp review data.
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Problem: the data is not evenly sampled.
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Case Study — Sentiment Analysis

Visual indicator of the performance
Single-layer GRUs with 50 hidden units (cells), trained on Yelp review data.
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Case Studies

How do RNNs handle the sentiments?

The language of Shakespeare <
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Case Study — Language Modeling

The language of Shakespeare — A mixture of the old and the new
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Case Study — Language Modeling

The language of Shakespeare — A mixture of the old and the new
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| Discussion & Future Work

« Clustering. The quality of co-clustering? Interactive clustering?
« Glyph-based sentence visualization. Scalability?
« Text data. How about speech data?

* RNN models. More advanced RNN-based models like attention models?

WHKUST
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Technical Detalls

Explaining individual hidden units - Decomposition

The output of an RNN at step t is typically a probability distribution:
exp(ul h®)
Y. jexp(uf h)

p; = softmax(Uh®) =

where U = [u] |,i = 1,2, ..., n, is the output projection matrix.

The numerator of p; can be decomposed to:

t t
exp(ul hV)) = exp (Z ul (h® — h(T‘l))> = 1_[ exp(ul AR®)

=1 =1

Here exp(ul AR®) is the multiplicative contribution of input word w;, the update of hidden state
AR® can be regard as the model’s response to w;.

WHKUST
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Expert Interview

Show
a tutorial video

WHKUST

Explore
the tool

3

Compare
two models

g ==
[ ]
R
4

Answer
questions

ada

5

Finish
a survey



Challenges

What are the challenges?

1. The complexity of the model

« Machine Translation: 4-layer LSTMs, 1000 units/layer (Sutskever I. et al., 2014)
- Language Modeling: 2-layer LSTMs, 650 or 1500 units/layer (Zaremba et al., 2015)

2. The complexity of the hidden memory

« Semantic information are distributed in hidden states of an RNN.

3. The complexity of the data

« Patterns in sequential data like texts are difficult to be analyzed and interpreted

WHKUST
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Other Findings

Comparina LSTMs and vanilla RNNs
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Left (A-C): co-cluster visualization of the last layer of an RNN. Right (D-F): visualization of the cell states of the
last layer of an LSTM. Bottom (GH): two models’ responses to the same word “offer”.
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| Contribution

» Avisual technique for understanding what RNNs learned.
« A VAtool that ablates the hidden dynamics of a trained RNN.

* Interesting findings with RNN models.
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