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Label alcohol sulphates density total sulfur
dioxide fixed acidity volatile

acidity
free sulfur
dioxide citric acid pH chlorides residual sugar

level 5 9.500 0.5500 0.9971 22.00 9.300 0.4300 9.000 0.4400 3.280 0.08500 1.900
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Fig. 1. Understanding the behavior of a trained neural network using the explanatory visual interface of our proposed technique. The
user uses the control panel (A) to specify the detail information to visualize (e.g., level of detail, rule filters). The rule-based explanatory
representation is visualized as a matrix (B), where each row represents a rule, and each column is a feature used in the rules. The
user can also filter the data or use a customized input in the data filter (C) and navigate the filtered dataset in the data table (D).

Abstract—With the growing adoption of machine learning techniques, there is a surge of research interest towards making machine
learning systems more transparent and interpretable. Various visualizations have been developed to help model developers understand,
diagnose, and refine machine learning models. However, a large number of potential but neglected users are the domain experts with
little knowledge of machine learning but are expected to work with machine learning systems. In this paper, we present an interactive
visualization technique to help users with little expertise in machine learning to understand, explore and validate predictive models.
By viewing the model as a black box, we extract a standardized rule-based knowledge representation from its input-output behavior.
We design RuleMatrix, a matrix-based visualization of rules to help users navigate and verify the rules and the black-box model. We
evaluate the effectiveness of RuleMatrix via two use cases and a usability study.

Index Terms—explainable machine learning, rule visualization, visual analytics

1 INTRODUCTION

In this paper, we propose an interactive visualization technique for un-
derstanding and inspecting machine learning models. By constructing
a rule-based interface from a given black box classifier, our method
allows visual inspection of the reasoning logic of the model, as well as
systematic exploration of the data used to train the model.

With the recent advances in machine learning, there is increasing
need for transparent and interpretable machine learning models [8, 17,
31]. To avoid ambiguity, in this paper we define interpretability of
a machine learning model as the ability to provide explanation for
the reasoning of its prediction so that human users can understand.
Interpretability is a crucial requirement for machine learning models in
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applications where human users are expected to sufficiently understand
and trust them. The need for interpretable machine learning has been
addressed in medicine, finance, security [18] and many other domains
where ethical treatment of data is required [13]. In a health care example
given by Caruana et al. [8], logistic regression was chosen over neural
networks due to interpretability concerns. Though the neural network
achieved a significant higher receiver operating characteristic (ROC)
score than the logistic regression, domain experts felt that it was too
risky to deploy the neural network for decision making with real patients
because of its lack of transparency. On the other hand, with logistic
regression, though less accurate, the fitted parameters have relatively
clearer meanings, which can facilitate the discovery of problematic
patterns in the dataset.

In the machine learning literature, trade-offs are often made between
performance (e.g., accuracy) and interpretability. Models that are con-
sidered interpretable, such as logistic regression, k-nearest neighbors,
and decision trees, often perform worse than models that are difficult
to interpret, such as neural networks, support vector machines, and
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random forests. In scenarios where interpretability is required, the
use of models with high performance is largely limited. There are
two common strategies to strike a balance between performance and
interpretability in machine learning. The first develops model simplifi-
cation techniques (e.g., decision tree simplification [28]) that generate
a sparser model without much performance degradation. The second
aims to improve the performance by designing models with commonly-
recognized interpretable structures (e.g., the linear relationships used by
Generalized Additive Models (GAM) [8] and decision rules employed
by Bayesian Rule Lists [19]). However, simplification techniques are
applicable to a certain type of model, which impedes their popular-
ization. The newly emerged interpretable models, on the other hand,
rarely retain a state-of-the-art performance along with interpretability.

Instead of struggling with the trade-offs, in this paper we explore the
idea of introducing an extra explanatory interface between the human
and the model to provide interpretability. The interface is created in two
steps. For a trained classification model, we first extract a rule list that
approximates the original one using model induction. As a second step,
we develop a visual interface to augment interpretability by enabling
interactive exploration of details of the decision logic. The visual
interface is crucial for numerous reasons. Though rule-based models
are commonly considered to be interpretable, their interpretability is
largely weakened when the rule list is too long, or the composition of
a rule is too complex. In addition, it is hard to identify how well the
rules approximate the original model. The visual interface also enables
the possibility to inspect the behavior of the model under a production
environment, where the operators may not possess much knowledge
about the underlying model.

In summary, the main contribution of this paper is a visual technique
that helps domain experts understand and inspect classification models
using rule-based explanation. We present two case studies and a user
study to demonstrate the effectiveness of the proposed method. We also
contribute a model induction algorithm that generates a rule list for any
given classification model.

2 RELATED WORK

Recent research has explored promising directions to make machine
learning models explainable. By associating semantic information with
a learned deep neural networks, researchers created visualizations that
can explain the learned features of the model [37, 47]. In another di-
rection, a variety of algorithms has been developed to directly learn
more interpretable and structured models, including generalized ad-
ditive models [6] and decision rule lists [19, 46]. Most related to our
work, model-agnostic induction techniques [9, 31] have been used to
generate explanations for any given machine learning model.

2.1 Model Induction
Model induction is a technique that infers an approximate and inter-
pretable model from any machine learning model. The inferred model
can be a linear classifier [31], a decision tree [9], or a rule set [23, 27].
It has been increasingly applied to create human-comprehensible proxy
models that help users make sense of the behavior of complex models,
such as artificial neural networks and support vector machines (SVMs).
One most desirable advantage of model induction is that it provides
interpretability by treating any complex model as a black box without
compromising the performance.

There are mainly three types of methods to derive approximate
models (often as rule sets) as summarized in related surveys [3, 4],
namely, decompositional, pedagogical and eclectic. Decompositional
methods extract a simplified representation from specialized structures
of a given model, e.g., the weights of a neural network, or the support
vectors of an SVM, and thus only work for certain types of models.
Pedagogical methods are often model-agnostic, and learn a model that
approximates the input-output behavior of the original one. Eclectic
methods either combine the previous two, or have distinct differences
from them. In this paper, we adopt pedagogical methods to obtain
rule-based approximations due to their simplicity and generalizability.

However, as the complexity of the original model increases, model
induction would also face trade-offs. We either learn a small and

comprehensible model that fails to approximate the original model
well, or we learn a well-approximated but large model (e.g., a decision
tree with over 100 nodes) that can be hardly recognized as “easy-to-
understand”. In our work, we utilize visualization techniques to boost
the interpretability while maintaining a good approximation quality.

2.2 Visualization for Model Analysis

Visualization has been increasingly used to support the understanding,
diagnosis and refinement of machine learning models [1, 21]. In
pioneering work by Tzeng and Ma [41], a node-linked visualization is
used to understand and analyze a trained neural network’s behavior in
classifying volume and text data.

More recently, a number of visual analytics methods have been
developed to support the analysis of complex deep neural networks
[5, 20, 24, 26, 29, 34, 39]. Liu et al. [20] used a hybrid visualization
that embedded debugging information into the node-link diagram to
help diagnose convolutional neural networks (CNNs). Alsallakh et
al. [5] stepped further to examine whether CNNs learn hierarchical
representations from image data. Rauber et al. [29] and Pezzotti et
al. [26] applied projection techniques to investigate the hidden activities
of deep neural networks. Ming et al. [24] developed a visual analytics
method based on co-clustering to understand the hidden memories of
recurrent neural networks (RNNs) in natural language processing tasks.
Strobelt et al. [39] utilized parallel coordinates to help researchers
validate hypotheses about the hidden state dynamics of RNNs. Sacha
et al. [34] introduced a human-centered visual analytics framework to
incorporate human knowledge in the machine learning process.

In the meantime, there are concrete demands in the industry to
apply visualization to assist the development of machine learning sys-
tems [16, 45]. Kahng et al. [16] developed ActiVis, a visual system to
support the exploration of industrial deep learning models in Facebook.
Wongsuphasawat et al. [45] presented the TensorFlow Graph Visual-
izer, an integrated visualization tool to help developers understand the
complex structure of different machine learning architectures.

These methods have addressed the need for better visualization tools
for machine learning researchers and developers. However, little atten-
tion has been paid to help domain experts (e.g., doctors and analysts)
who have little or no knowledge of machine learning or deep learning
to understand and exploit this powerful technology. Krause et al. [17]
developed an overview-feature-item workflow to help explain machine
learning models to domain experts operating a hospital. Such non-
experts in machine learning are the major target users of our solution.

2.3 Visualization of Rule-based Representations

Rule-based models are composed of logical representations, that is, IF-
THEN-ELSE statements which are pervasively used in programming
languages. Typical representations of rule-based models include deci-
sion tables [43], decision trees [7], and rule sets or decision lists [33].
Among these representations, trees are hierarchical data that have been
studied abundantly in visualization research. A gallery of tree visu-
alization can be found on treevis.net [35]. Most related to our work,
BaobabView [42] uses a node-link data flow diagram to visualize the
logic of decision trees, which inspired our design of data flow visual-
ization in rule lists.

However, there is little research on how visualization can help ana-
lyze decision tables and rule lists. The lack of interest in visualizing
decision tables and rule lists is partially due to the fact that they are
not naturally graphical representations as trees. There is also no con-
sensus that trees are the best visual representations for understanding
rule-based models. A comprehensive empirical study conducted by
Huysmans et al. [15] found that decision tables are the most effective
representations, while other studies [2] disagrees. In a later position
paper [12], Freitas summarized a few good properties rules and tables
possess that trees do not. Also, all previous studies used pure texts to
present rules. In our study, we provide a graphical representation of
rule lists as an alternative for navigating and exploring proxy models.
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Fig. 2. The pipeline for creating a rule-based explanation interface. The rule induction step (1) takes (A) the training data and (B) the model to be
explained as input, and produces (C) a rule list that approximates the original model. Then the rule list is filtered (2) according to user-specified
thresholds of support and confidence. The rule list is visualized as RuleMatrix (3) to help users navigate and analyze the rules.

3 A RULE-BASED EXPLANATION PIPELINE

In this section, we introduce our pipeline for creating a rule-based
visual interface that helps domain experts understand, validate, and
inspect the behavior of a machine learning model.

3.1 Goals and Target Users
In visualization research, most existing work for interpreting machine
learning models focuses on helping model developers understand, diag-
nose and refine models. In this paper, we target our method at a large
number of potential but neglected users – the experts in various domains
that are impacted by the emerging machine learning techniques (e.g.,
health care, finance, security, and policymakers). With the increasing
adoption of machine learning in these domains, however, experts may
only have little knowledge of machine learning algorithms but would
like to or are required to use them to assist in their decision making.

The primary goal of these potential users, unlike model developers,
is to fully understand how a model behaves so that they can better use
it and work with it. Before they can fully adopt a model, adequate
trust about how the model generally behaves need to be established.
Once a model is learned and deployed, they would still need to verify
its predictions in case of failure. Specifically, our goal is to help the
domain experts answer the following questions:

Q1 What knowledge has the model learned? A trained machine
learning model can be seen as an extracted representation of knowl-
edge from the data. We propose to present a unified and understand-
able form of learned knowledge for any given model as rules (i.e.,
IF-THEN statements). Here each piece of knowledge consists of
two parts: the antecedent (IF) and the consequent (THEN). In this
way, users can focus on understanding the learned knowledge itself
without extra burden of dealing with different representations.

Q2 How certain is the model for each piece of knowledge? There
are two types of certainty that we should consider: the confidence
(the probability that a rule is true according to the model) and the
support (the amount of data in support of a rule). Low confidence
means that the rule cannot separate the classes apart, while a low
support indicates that there is little evidence for the rule. These are
important metrics that help the experts decide whether to accept or
reject the learned knowledge.

Q3 What knowledge does the model utilize to make a prediction?
This is the same question as “Why does the model predict x as
y”. Unlike the previous two questions, this question is about
verifying the model’s prediction on a single instance or a subset
of instances, instead of understanding the model in general. This
is crucial when users prefer to verify the reasons for a model’s
prediction than to blindly trust it. For example, a doctor would
want to understand the reasons of an automatic diagnosis before
making a final decision. Domain experts may have knowledge and
theories that are originated in years of research and study, which is
what current machine learning models fail to utilize.

Q4 When and where is the model likely to fail? This question arises
when a model does not perform well on out-of-sample data. A rule
that the model is confident about may not be generalizable in the
production. Though undesirable, it is not rare that a model gives a
highly confident but wrong prediction. Thus, we need to provide
guidance on when and where the model is likely to fail.

3.2 Rule-based Explanation

What are explanations of a machine learning model? In existing litera-
ture, explanations can take different forms. One widely accepted form
of explanation in the machine learning community is the gradients of
the input [37], which is often used to analyze deep neural networks.
Recently, Ribeiro et al. [31] and Krause et al. [17] defined an expla-
nation of the model’s prediction as a set of features that are salient for
predicting an input. Explanations can also be produced via analogy,
that is, explaining the model’s prediction of an instance by providing
the predictions of similar instances. These explanations, however, can
only be used to explain the model locally for a single instance.

In this paper, we present a new type of explanation that utilizes
rules to explain machine learning models globally (Q1). A rule-based
explanation of a model’s prediction Y of a set of instances X is a
set of IF-THEN decision rules. For example, a model predicts that
today it will rain. A human explanation might be: it will rain because
my knees hurt. The underlying rule format of the explanation would
be: IF knees hurt = True THEN rain = 0.9. Such explanations
with implicit rules occur throughout daily life, and are analogous to the
inductive reasoning process that we use every day.

It should be also noted that there exist different variants of rule-based
models. For example, rules can be mutually-exclusive or inclusive (i.e.,
an instance can fire multiple rules), conjunctive (AND) or disjunc-
tive (OR), and standard or oblique (i.e., contain composite features).
Though mutually-exclusive rule sets do not require conflict resolution,
the complexity of a single rule is usually much larger than an inclusive
rule set. In our implementation, we use the representation of an or-
dered list of inclusive rules (e.g., Bayesian Rule Lists [19, 46]). When
performing inference, each rule is queried in order and will only fire
if all its previous rules are not satisfied. This allows fast queries and
bypasses the complex conflicts resolution mechanisms.

3.3 The Pipeline

Our pipeline for creating rule-based visual explanations consists of the
three steps (Fig. 2): 1. Rule Induction, 2. Filtering, and 3. Visualization.

Rule Induction. Given a model F that we want to explain, the first
step is to extract a rule list R that can explain it. There are multiple
choices of algorithms as discussed in Sect. 2.1. In this step we adopt the
common pedagogical learning settings. The original model is treated
as a teacher, and the student model is trained using the data “labeled”
by the teacher. That is, we use the predictions of the teacher model as
labels instead of the real labels. The algorithm is described in detail in
Section 4.

3



Filtering. After extracting a rule list approximation of the original
model, we will have a semi-understandable explanation. The rule list is
understandable in the sense that each rule is human-readable. However,
the length of the list can grow too long (e.g., a few hundreds) to be
practically understandable. Thus we adopt a step of filtering to obtain a
more compact and informative list of rules.

Visualization. The simplest way to present a list of rules is just to
show a list of textual descriptions. However, there are a few drawbacks
associated with purely textual representations. First, it is difficult
to identify the importance and certainty of each extracted rule (Q2).
Second, it is difficult to perform verification of the model’s prediction
if the length of the list is long or the number of features is large. This
is because the features used in each rule may be different and not
aligned [15], which results in a waste of time in aligning features in
input and features used in a rule.

As a solution, we develop RuleMatrix, a matrix-based representation
of rules, to help users understand, explore and validate the knowledge
learned by the original model. The details of the filtering and visual
interface are discussed in Section 5.

4 RULE INDUCTION

In this section, we present the algorithm for extracting rule lists from
trained classifiers. The algorithm takes a trained model and a training
set X as input, and produces a rule list that approximates the classifier.

4.1 The Algorithm

We view the task of extracting a rule list as a problem of model induc-
tion. Given a classifier F , the target of the algorithm is a rule list R
that approximates model F . We define the fidelity of the approximate
rule list R as its accuracy with the true labels as the output of F :

fidelity(R)X =
1

|X |
∑
x∈X

[F (x) = R(x)], (1)

where [F (x) = R(x)] evaluates to 1 if F (x) = R(x) and 0 otherwise.
The task can be also viewed as an optimization problem, where we
are maximizing the fidelity of the rule list. Unlike common machine
learning problems, we have access to the original model F , which can
be used as an omniscient oracle that we can ask for the labels of new
data. Our algorithm highlights the use of the oracle.

The algorithm contains four steps (Algorithm 1). First, we model
the distribution of the provided training data X . We use a joint distribu-
tion estimation that can handle both discrete and continuous features
simultaneously. Second, we sample a number of data Xsample from the
joint distribution. The number of samples is a customizable parameter
and can be larger than the amount of original training data. Third, the
original model F is used to label the sampledXsample. In the final step,
we use the sampled data Xsample and the labels Ysample to train a rule
list. There are a few choices [11, 22, 46] for the training algorithm.

Input: model F , training data X , rule learning algorithm TRAIN
Parameters: parameter nsample, feature set S
Output: A rule list R that approximates F

1 M ← ESTIMATEDISTRIBUTION(X , S);
2 Draw samples Xsample ← SAMPLE(M , nsamples);
3 Get the labels of Xsample using: Ysample ← F (Xsample);
4 Rule list R← TRAIN(Xsample, Ysample);
5 return R;

Algorithm 1: Rule Induction

The distribution estimation and sampling steps are inspired by
TrePan [9], a tree induction algorithm that recursively extracts a deci-
sion tree from a neural network. The sampling is mainly needed for two
reasons. First, since the goal is to extract a rule list that approximates
the given model, the rule list should also be able to approximate the
model’s behavior on input that has not been seen before. The sampling
helps generate unforeseen data. Second, when the training data is lim-
ited, the sampling step creates sufficient training samples, which helps

achieve a good fidelity for the extracted rule list. Next, we introduce
the details of the algorithm.

Input: training data X , feature set S
Output: The distribution estimation M

1 Divide the features S into discrete features Sdisc and
continuous features Scon;

2 Partition X to Xdisc and Xcon according to Sdisc and Scon;
/* Estimate the categorical distribution p */

3 Initialize a counter Counter : xdisc 7→ 0;
4 for x

(i)
disc in Xdisc do

5 Counter[x
(i)
disc]← Counter[x

(i)
disc] + 1

6 end
7 for x

(i)
disc in Counter do

8 p
x
(i)
disc

← Counter[x
(i)
disc]/|X |;

9 end
/* Estimate conditional density f */

10 Estimate the bandwidth matrix H from Xcon;
11 for x

(i)
disc in Counter do

12 f
x
(i)
disc

← DENSITYESTIMATION(Xcon, H);

13 end
14 return M = (p, f);

Algorithm 2: Estimate Distribution

Distribution Estimation. The first step is to build a model M that
estimates the distribution of the training set X = {x(i)}Ni=1 with N
instances, where each x(i) ∈ Rk is a k dimensional vector. With-
out losing generality, we assume the k features are mixed with d dis-
crete features xdisc = (x1, ..., xd) and (k − d) continuous features
xcon = (xd+1, ..., xk). Using Bayes’ Theorem, we can write the joint
distribution of the mixed discrete and continuous random variables as:

f(x) =f(xdisc,xcon)

=Pr(xdisc)f(xcon | xdisc).
(2)

The first term is the probability mass function of the discrete random
variables, and the second term is the conditional density function of the
continuous random variables given the values of the discrete variables.
Next we discuss the two terms separately.

We assume that the discrete features xdisc follow categorical distri-
butions. The probability of each combination of xdisc can be estimated
using its frequency in the training data (Algorithm 2, lines 3-9):

Pr(xdisc = xdisc) = p̂xdisc =

∑N
i=1[x

(i)
disc = xdisc]

N
, (3)

where [x(i)
disc = xdisc] evaluates to 1 if x(i)

disc = xdisc, and 0 otherwise.
We use multivariate density estimation with Gaussian kernel to

model continuous features xcon (Algorithm 2, line 10-13). Since we are
interested in the conditional distribution, we can write the conditional
density estimation as:

f(xcon | xdisc)

=
1

|S|
∑
x∈S

exp{− 1
2
(xcon − xcon)

TH−1(xcon − xcon)}
(2π)

c
2 |H| 12

,
(4)

where S = {x | xdisc = xdisc,x ∈ X} is a subset of training data
that has the same discrete values as xdisc, and c = (k − d) is the
number of the continuous features. Here H is the bandwidth matrix,
and also the covariance matrix for the kernel function. The problem left
is how to choose the bandwidth matrix H. There are a few methods for
estimating the optimal choice of H, such as smoothed cross validation
and plug-in. For simplicity, we adopt Silverman’s rule-of-thumb [36]:

√
Hii = (

c+ 2

4
n)−

1
c+4 σi

Hij = 0, i 6= j,
(5)
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Fig. 3. The performance of the algorithm under different sampling rates.
The x-axis shows the logarithms of the sampling rates. The blue, orange,
and green lines show the average fidelities and average lengths of the
extracted rule lists on the Abalone, Bank Marketing and Pima datasets
for 10 runs.

where σi is the standard deviation of feature i.
Once we have built a model of the distribution, M , we can easily

create Xsample. The question left is how to choose a proper number of
samples, which will be discussed in Sect. 4.2.

Rule List. In the last step, a training algorithm TRAIN is needed
to learn a rule list from (Xsample,Ysample). There exist various algo-
rithms that can construct a list of rules from training data [11,22,44,46].
Both of the algorithms proposed by Marchand and Sokolova [22] and
Fawcett [11] follow a greedy construction mechanism and do not offer
a good performance. In the implementation, we adopt the Scalable
Bayesian Rule List (SBRL) algorithm proposed by Yang et al. [46].
This algorithm models the rule list using a Bayesian framework and
allows users to specify priors related to the length of the list and the
complexity of each rule. This is useful for our task, since we can have
controls on the complexity of the extracted rule list. This algorithm
also has the advantage that it can be more naturally extended to support
multi-class classification (i.e., by switching the output distribution from
binomial to multinomial), which supports a more generalizable solution.
Readers can refer to the paper by Yang et al. [46] for more details.

Note that the algorithm requires a preprocessing step to discretize
the input and pre-mine a candidate rule sets for the algorithm to choose
from. In our implementation, we use the minimum description length
(MDL) discretization [32] to discretize continuous features, and use
the FP-Growth item set mining algorithm [14] to get the candidate rule
sets. Other discretization and rule mining methods can also be used.

4.2 Experiments
To study the effect of sample size and evaluate the performance of the
proposed rule induction algorithm, we test our induction algorithm on
several publicly available datasets from the UCI Machine Learning
Repository [10] and a few popular models that are commonly regarded
as hard to interpret.

Sampling Rate. First, we study the effect of sampling rate (i.e.,
number of samples / number of training data) using three datasets,
Abalone, Bank Marketing and Pima Indian Diabetes (Pima). Abalone
contains the physical measurements of 4177 abalones originally labeled
with their rings (representing their ages). Since our current implemen-
tation only supports classification, we replace the number of rings with
four simplified and balanced labels, i.e., rings < 9, 9 ≤ rings < 12,
12 ≤ rings < 15, and 15 < rings, with 1407, 1810, 596, and 364
instances respectively. Bank Marketing and Pima are binary classifica-
tions. All three datasets are randomly partitioned into a 75% training

Table 1. The fidelities of the rule list generated by the algorithm from a
neural network and an SVM. The table reports the mean and standard
deviation (with parenthesis) in percentage of the fidelity of 10 runs for
each setting.

Dataset NN-1 NN-2 NN-4 SVM

Breast Cancer 95.5 (1.4) 94.5 (1.5) 95.0 (2.0) 95.9 (1.4)
Wine 93.1 (2.3) 94.0 (2.4) 94.0 (3.7) 91.3 (3.5)

Iris 96.3 (1.7) 97.9 (2.6) 94.7 (3.1) 97.4 (2.0)
Pima 89.6 (2.0) 89.9 (1.2) 89.5 (1.7) 91.8 (1.5)

Abalone 88.5 (0.9) 88.6 (0.7) 86.8 (0.5) 90.1 (0.8)
Bank Marketing 96.4 (0.8) 92.1 (1.0) 89.1 (1.3) 97.0 (0.7)

Adult 95.0 (0.2) 94.8 (0.4) 93.2 (0.3) 96.7 (0.3)

set and a 25% test set. We train a neural network with four hidden
layers and 50 neurons per layer on the training set. Then we test the
algorithm on the neural network with six sampling rates growing expo-
nentially: 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0. We run each setting 10 times
and compute the fidelity on the test set.

As shown in Fig. 3, with all three datasets, the fidelity of extracted
rule lists generally increases as the sampling rate grows. However,
the complexity of the rule lists also increases dramatically (which
is also a reason for an additional visual interface). Here there is a
trade-off between the fidelity and interpretability of the extracted rule
list. Considering that interpretability is our major goal, we adopt
the following strategy for choosing sampling rate: start from a small
sampling rate (1.0), and gradually increase the sampling rate until we
get a good fidelity or the length of the rule list exceeds an acceptable
threshold (e.g., 60).

Fidelity. To verify that the proposed rule induction algorithm is
able to produce a good approximation of a given model, we benchmark
the algorithm on a set of datasets with two different classifiers, neural
networks and support vector machines. The datasets we use include:
Breast Cancer Wisconsin (Diagnostics), Iris, Wine, Abalone (four-class
classification), Bank Marketing, Pima Indian Diabetes and Adult.

We test the algorithm on neural networks with one, two, and four
hidden layers, and support vector machines with nonlinear Radial Basis
Function (RBF) kernel. We use the implementation of these models
in the scikit-learn package [25]. We use a sampling rate of 2.0 for
the Adult dataset, and a sampling rate of 4.0 for the rest. As shown
in Table 1, the rule induction algorithm can generate rule lists that
approximate a model with acceptable fidelity on the selected datasets.
The fidelity is over 90% on most datasets except for Pima and Abalone.

Speed. The time for creating a list of 40 rules from 7,000 samples
with 20 features can take up to 3 minutes on a PC (the time varies
under different parameters). The estimation and sampling step take
less than one second, and the major bottleneck lies in the FP-Growth
(less than 10 seconds) and SBRL (more than 2 minutes) algorithms.
We restrict the discussion of this issue in this paper due to page limits.
The material necessary for reproduce the results is available at http:
//rulematrix.github.io.

5 RULEMATRIX: THE VISUAL INTERFACE

This section presents the design and implementation of the visual
interface for helping users understand, navigate and inspect the learned
knowledge of classifiers. As shown in Fig. 1, the interface contains a
control panel (A), a main visualization (B), a data filter panel (C) and a
data table (D). In this section, we mainly present the main visualization,
RuleMatrix, and the interactions supported by the other views.

5.1 Visualization Design

RuleMatrix (Fig. 4) consists of three visual components: the rule
matrix, the data flow, and the support view. The rule matrix visualizes
the content of a rule list in a matrix-based design. The data flow shows
how data flows through the list using a Sankey diagram. The support
view supports the understanding and analysis of the original model that
we aim to explain.
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5.1.1 Rule Matrix

The major visual component of the interface is the matrix-based visual-
ization of rules. A decision rule is a logical statement consisting of two
parts: the antecedent (IF) and the consequent (THEN). Here we restrict
the antecedent to be a conjunction (AND) of clauses, where each clause
is a condition on an input feature (e.g., 3 < x1 AND x2 < 4). This
restriction eases users’ cognitive burden of discriminating different
logical operations. The output of each rule is a probability distribution
over possible classes, representing the probability of an instance satis-
fying the antecedent belongs to each class. The simplest way to present
a rule is to write it down as a logical expression, which is ubiquitous
in programing languages. However, we found textual representations
difficult to navigate when the length of the list is too large. The problem
with textual representations is that the input features are not presented
in the same order in each rule. Thus, it is difficult for users to search a
rule with certain condition or compare the conditions used in different
rules. This problem has also been identified by Huysmans et al. [15],

To address this issue and help users understand and navigate the rule
list (Q1), we present the rules in a matrix format. As shown in Fig. 4B,
each row in the matrix represents the antecedent of a decision rule, and
each column represents an input feature. If the antecedent of a decision
rule i contains a clause using feature xj , then a compact representation
(Fig. 4- 1©) of the clause is shown in the corresponding cell (i, j). In
this layout, the order of the features is fixed, which helps users visually
search and compare rules by features. The length of the bar underneath
a feature name encodes the frequency with which the feature occurs
in the decision rules. The features are also sorted according to their
importance scores, which is computed by the number of instances that
a feature has been used to discriminate. The advantage of the matrix
representation is that it allows users to verify and compare different
rules quickly. This also allows easier verification and evaluation of the
model’s predictions (Q3).

Visualizing Conditions. In the antecedent of rule i, a clause that
uses feature j (e.g., 0 ≤ xj < 3) is visualized as a gray and translu-
cent box in cell (i, j), where the covered range represents the interval
in the clause (i.e., [0, 3)). In each cell (i, j), a compact view of the
data distribution of feature j is also presented (inspired by the idea of
sparklines [40]). For continuous features, the distributions are visu-

alized as histograms. For discrete features, bar charts are used. The
part of data that satisfies the clause is also highlighted with a higher
opacity. This combination of the compact view of data distribution and
the range constraint helps users quickly grasp the properties of different
clauses in a rule (Q1), i.e., the tightness or width of the interval and the
number of instances that satisfy the clause.

Visualizing Outputs. As discussed above, the output of a rule is a
probability distribution. At the end of each row, we present the output
of the rule as a colored number, with color representing the output
label of the rule, and the number showing the probability of the label.
A vertically stacked bar is positioned next to the number to show the
detailed probability of each label. Using this design, users are able to
quickly identify the output label of the rule by the color, and learn the
actual probability of the label from the number.

5.1.2 Data Flow
To provide users with an overall sense of how the input data is classified
by different rules, a waterfall-like Sankey diagram (Fig. 4A) is pre-
sented to the left of the rule matrix. The main vertical flow represents
the data that remains unclassified. Each time the main flow “encounters”
a rule (represented by a horizontal bar), a horizontal flow representing
the data satisfying the rule forks from the main vertical flow. The widths
of the flows represent the quantities of the data. The colors encode the
labels of the data. That is, if a flow contains data with multiple labels,
the flow is divided into multiple parallel sub-flows, whose widths are
proportional to the quantities of different labels. The data flow helps
the user maintain a proper mental model of the ordered decision rule
list. The rules are ordered, and the success of a rule has the implication
that previous rules are not satisfied. The user can identify the amount
of data satisfying a rule through the width of the flow, which helps the
user decide to trust or reject the rule (Q2). The design of the data flow
is inspired by the node-link layout used in BaobabView [42].

5.1.3 Support View
The support view is designed to support the understanding and analysis
of the performance of the original model. Note that there are two
types of errors that we are interested in: the error between the rule
and the model (fidelity), and the error between the model and the
real data (accuracy). When the error between a rule and the model is
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high, users should be notified that the rule may not be a well-extracted
“knowledge”. When the error between the original model and the real
data is high, the users should be notified that the model’s prediction
should not be fully trusted (Q4). In the support view, we provide for
each rule a set of two performance visualizations (Fig. 4C), fidelity and
evidence to help users analyze these two types of errors.

Fidelity. We use a simple glyph that contains a number (0 to 100)
to present the fidelity (Equation 1) of the rule on the subset of data
satisfying the rule. The value of fidelity represents how accurately the
rule represents the original model on this subset. The higher the fidelity,
the more reliable the rule is in representing the original model. The
number is circled by an arc, whose angle also encodes the number.
As shown in Fig. 4- 2©, the glyph can be colored green (high), yellow
(medium), red (low) according to the level of fidelity. In the current
implementation, the fidelity levels are set to above 80% (high), 50%
(medium) to 80%, and below 50% (low), respectively.

Evidence. The second performance visualization shows the evidence
of the original model on the real data (users can switch between training
or test set). To support comprehensive analysis of the error distribution,
we adopt a compact and simplified variant of Squares [30]. As shown
in Design 1 in Fig. 4- 3©, we use horizontally stacked boxes to present
the predictions of the model. The color encodes the predicted class by
the original model. The width of a box encodes the amount of data
with a certain type of prediction. We use striped boxes to represent
erroneous predictions. That is, a blue striped box ( ) represents data
that is wrongly classified as class blue and has real labels different
from class blue. During the development of this interface, we have
experimented with an alternative design which had the same color
coding, as shown in Design 2 in Fig. 4- 3©. In this alternative design,
the data is divided into horizontally stacked boxes according to the true
labels. Then we partition each box vertically into two parts: the upper
one representing correct predictions and the lower one representing the
wrong predictions (striped boxes). The lower part is further partitioned
into multiple parts according to the predicted labels. However, during
our informal pilot studies with two graduate students, the Design 2 was
found to be “confusing” and “distracting”. Though Design 1 fails to
present the real labels of the wrong predictions, it is more concise and
can be directly used to answer whether a model is likely to fail (Q4).

The advantage of the compact performance visualization is that it
presents an intuitive error visualization within a small space. We can
easily identify the amount of instances classified as a label or quantify
the mistakes by searching for the boxes with the corresponding coding.

5.2 Interactions
RuleMatrix supports three types of interactions: filtering the rules,
which is used to reduce cognitive burden by reducing the number of
rules to show; filtering the data, which is used to explore the relation
between the data and the rules; and details on demand.

5.2.1 Filtering the Rules
The filtering of rules helps relieve the scalability issue and reduce the
cognitive load when the extracted rule list is too long. This occurs
when we have a complex model (e.g., a neural net with multiple layers,
or an SVM with nonlinear kernel), or a complex data set. In order to
learn a rule list that well approximates the model, the complexity of
the rule list inevitably grows. In our implementation, we provide two
types of filters: filter by support and filter by confidence. The former
filters the rules that have little support, which are seldom fired and
are not salient. The latter filters the rules that have low confidence,
which are not significant in discriminating different classes. In our
implementation, filtered rules are grouped into collapsed “rules” so that
users can keep track of them. Users can also expand the collapsed rules
to see them in full details. By adjusting rule filters, users are allowed to
explore a list of over 100 rules with no major cognitive burden.

5.2.2 Filtering the Data
The data filtering function is needed to support two scenarios. First,
data filtering allows users to apply the divide and conquer strategy
to understand the model’s behavior, i.e., only focus on the model’s

behavior on the data one is interested in. Second, by filtering, users
can identify the data entries in the data table (Fig. 1D) that support
specific rules. This boosts users’ trust in both the system and the model.
During our experiments, we found that data filters can greatly reduce
the number of rules shown when combined with rule filters.

5.2.3 Details on Demand

To provide a clean and concise interface, we hide the details that users
can view on demand. Users can request details in two ways: interacting
with the RuleMatrix directly or modifying the settings in the control
panel. In the RuleMatrix, users can check the actual text description
of a clause by hovering on the corresponding cell. To view the details
about the data distribution, users can click on a cell, which expand
the cell and show a stream plot (continuous feature) or a stacked bar
charts (categorical feature) of the distribution (Fig. 4B). The choice of
stream plot for continuous features is due to its ability in preventing
color discontinuities [42]. A vertical ruler that follows the mouse is
displayed to help align and compare the intervals of the clauses using
the same feature across multiple rules. Users can see the actual amount
of data by hovering over the evidence bars or certain parts of the data
flow. Users can view the conditional distribution or hide the striped
error boxes by modifying the settings in the control panel. Here the
conditional distribution of feature xj at rule i denotes the distribution
given that all previous rules are not satisfied, that is, the distribution of
the data that is left unclassified until rule i.

The rule filtering functions are provided in the control panel
(Fig. 1A), and the data filtering functions are provided in the data
filter (Fig. 1C). Users are also allowed to customize an input and re-
quest the system to present the prediction of the original model and
highlight the satisfied rule.

6 EVALUATION

We present a usage scenario, a use case, and a user study to demonstrate
how our method effectively helps users understand the behavior of a
classifier.
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Fig. 5. Using the RuleMatrix to understand a neural network trained on
the Breast Cancer Wisconsin (Original) dataset.

6.1 Usage Scenario: Understanding a Cancer Classifier
We first present a hypothetical scenario to show how RuleMatrix helps
people understand the knowledge learned by a machine learning model.

Mary, a medical student is learning about breast cancer and is inter-
ested in identifying cancer cells by the features measured from biopsy
specimens. She is also eager to know whether the popular machine
learning algorithms can learn to classify cancer cells accurately. She
downloads a pre-trained neural network and the Breast Cancer Wis-
consin dataset from the Internet. The dataset contains cytological
characteristics of 699 breast fine-needle aspirates. Each of the cytologi-
cal characteristics are graded from 1 to 10 (lower is closer to begin) at
the time of sample collection. The accuracies of the model on training
and test set are 97.3% and 97.1% respectively. She want to know what
knowledge the model has learned (Q1).
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Fig. 6. The use case of understanding a neural network trained on Pima Indian Diabetes dataset. A: The initial visualization of the list of 22 extracted
rules, with an overall fidelity of 91%. The neural network has an accuracy of 79% on the training data. B: The applied data filter. The ranges of the
features are highlighted with light blue. C: The visualization of the rule list with the filtered data. The accuracy of the original model drops to only 56%.

Understanding the rules. Mary uses our pipeline and extracts a list
of 12 rules from the neural network. The visualization is presented to
Mary. She quickly goes through the list and notices that rule 6 to rule
12 have little support from the training data (Q2). Then she adjust the
minimum evidence in the rule filter (Fig. 1A) to 0.014 to collapse the
last 7 rules (Fig. 5). She then finds that the first rule outputs malignant
with a high probability (0.99) and a high fidelity (0.99). She looks into
the rule matrix and learns that if the marginal adhesion score is larger
than 5, the model will very likely predict malignancy. This aligns with
her knowledge that the loss of adhesion is a strong sign of cancer cells.
Then she checks rule 3, which has the largest support from the dataset.
The rule shows that if the bland chromatin (the texture of nucleus) is
smaller or equal than 1, the cell should be benign. She finds this rule
interesting since it indicates that one can quickly identify benign cells
in the examination by checking if the nucleus is coarse.

6.2 Use Case: Improving Diabetes Classification
In this use case, we the Pima Indian Diabetes Dataset (PIDD) [38] to
demonstrate how RuleMatrix can lead to performance improvements.
The dataset contains diagnostic measurements of 768 female patients
aged from 21 to 81, of Pima Indian heritage. The task is to classify
negative patients (healthy) and positive patients (has diabetes). Each
data instance contains eight features: the number of previous pregnan-
cies, plasma glucose, blood pressure, skin thickness, insulin, body mass
index (BMI), and diabetes pedigree function (DPF). DPF is a function
measuring a patient’s probability of getting diabetes based on the his-
tory of the patient’s ancestors. The dataset is randomly partitioned into
75% training set and 25% test set. The distribution of the labels in
the training set and test set are 366 negatives / 210 positives and 134
negatives / 58 positives respectively.

In the beginning, we trained a neural network of 2 layers with 20
neurons in each layer. The l-2 normalization factor was determined
as 1.0 via 3-fold cross-validations. We ran the training 10 times and
received an average accuracy of 72.4% on the test data. The best neural
network had an accuracy of 74.0% on the test set. We ran the proposed
rule-based explanation pipeline and extracted a list of 22 decision rules
from a trained network. The rule list is visualized with the training
data and a rule filter of minimum evidence of 0.02 (Fig. 6A). From
the header “evidence”, we can see that the neural network achieves an
overall accuracy of 79% on the training set.

Understanding the Rules (Q1, Q2). Then we navigated the ex-
tracted rules using the RuleMatrix with the training set. We noticed that
there was no dominant rules with large supports, except for rule 4 and
the last default rule, which have relatively longer bars in the “evidence”
column, indicating a larger support. This reflects that the dataset is in
a difficult domain and it is not easy to accurately predict whether one
has diabetes or not. Rule 1 (Fig. 6- 1©) has only one condition, 176 <
plasma glucose, which means that a patient with high plasma glucose is
very likely to have diabetes. This agrees with our common knowledge
in diabetes. Then we noticed that the outputs of rules 2 to 5 were all
negative with probabilities above 0.98. Thanks to the aligned layout
of features, we derived an overall sense that the patients younger than
32 (Fig. 6- 2©) and a BMI less than 36.5 are not likely to have diabetes.
After going through the rest of the list, we concluded that patients with
high plasma glucose and high BMI are more likely to have diabetes,
and young patients are less likely to have diabetes in general.

Understanding the Errors (Q4). After navigating the rules, we
were mostly interested in the type of patients that have diabetes but
are wrongly classified as negative by the neural network. The false
negative errors are undesirable in this domain since they may delay the
treatment of a real patient and cause higher risks. Based on our findings
concluded from rules 2 to 5, we decided to focus on the patients older
than 32, that is, those with higher risk. We also filtered the patients
with low or high plasma glucose (lower than 108 or higher than 137),
because most of them are correctly classified as negative or positive
by the model. As a result of the filtering, the accuracy of the model on
the remaining data (74 instances) immediately dropped to 62%. From
the resulting rules, we then further filtered patients with a BMI lower
than 27, who are unlikely to have diabetes, and the patients with a DPF
higher than 1.18, who are very likely to have the disease. After the
filtering (Fig. 6B), the accuracy of the model on the resulting subset
of 62 patients dropped to only 56%. From Fig. 6C, we found a large
portion of blue striped boxes ( ), denoting patients that have diabetes
but were wrongly classified as healthy. This validated our suspicion
that the patients with no obvious indicators are difficult to classify.

Improving the Performance. Based on the understanding of the
error, a simple idea appeared to be worth trying: can we improve
the accuracy of the model by oversampling the difficult subset? We
experimented by oversampling this subset by half the amount to get
31 new training data, and trained new neural networks with the same
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Table 2. The experiment tasks and results. The results are summarized
as the number of correct answers / total number of questions.

Goal Question Result

T1 Q1 Which of the textual descriptions best describe rule i? 16/18

T2 Q1 Which of the rules exists in the extract rule lists? 18/18

T3 Q2 Which of the highlighted rules is most reliable in repre-
senting the original model?

17/18

T4 Q2 Which of the highlighted rules has the largest support? 17/18

T5 Q4 Under which of the four highlighted rules, the original
model is most likely to give wrong predictions?

17/18

T6 Q3 For a given data (presented in texts),
(a) what would the original model most likely to predict?
(b) which rule do you utilize to perform the prediction?

�
18/18
17/18

hyper-parameters. To determine whether the change led to an actual
improvement, we ran the training and sampling 10 times. The mean
accuracy of 10 runs reached 75.5% on the test set, with a standard
deviation of 2.1%. The best model had a performance of 78.6%, which
was significantly better than the original best model (74.0%).

6.3 User Study
We conducted a quantitative experiment to evaluate the effectiveness of
RuleMatrix in helping users understand the behavior of machine learn-
ing models. The main goal of the experiment is to investigate whether
users can understand the interactive matrix-based representation of
rules, and whether users can understand the behavior of a given model
via the rule-based explanations. We asked participants to perform rel-
evant tasks to benchmark the effectiveness of the proposed interface,
and asked for subjective feedbacks to understand users’ preference and
directions for improvements.

Study Design. We recruited nine participants, ages 22 to 30. Six
were current graduate students majoring in computer science, three had
experience in research projects related to machine learning, and none
of them had prior experiences in model induction. The experiments
were conducted using a 23” monitor.

The study was organized into three steps. First, each participant
was presented with a 15 minutes tutorial and was given 5 minutes to
navigate and explore the interface. Second, participants were asked
to perform a list of tasks using RuleMatrix. Finally, participants were
asked to answer five subjective questions related to the general usability
of the interface and suggestions for improvements. We used the Iris
dataset and an SVM as the to-be-explained model during the tutorial.
In the formal study, we used the Pima Indian Diabetes dataset, and used
RuleMatrix to explain a neural network with two hidden layers with
20 neurons per layer. The extracted rule list contained 20 rules, each
containing a conjunction of 1, 2, or 3 clauses).

Tasks. Six tasks (Table 2) were created to validate participants’
ability to answer the questions (Q1 - Q4) using RuleMatrix. For each
task, we created two different questions with the same format (e.g.,
multiple-choice questions). That is, each participant was asked to
perform 12 tasks. Questions of T1 to T5 were multiple-choice questions
with one correct answer and four choices. T6(a) was also multiple-
choice question while T6(b) asked the participants to enter a number.

Results. The average time that the participants took to complete all
the 12 tasks in the formal study was 14’ 43” (std: 2’ 26”). Accuracy
of the performed tasks is summarized in Table 2. All the participants
performed the required tasks fluently and correctly most of the time.
This suggests validation of the basic usability of our method. However,
we observed that participants took extra time in completing T2, which
required the search and comparisons of multiple rules and multiple
features. Three also complained that it was easy to get the wrong
message from the textual representations provided in the choices in T1
and T2 (i.e., mistake 29 < x from x < 29), and they had to double
check to make sure that the clauses they identified in the visualization
indeed matched the texts. We examined the answer sheets and found

the errors of T1 are all of this type. This affirmed to us that text is not
as intuitive as graphics in representing intervals in our context.

Feedback. We gathered feedback through subjective questionnaires
after the formal study. Most participants felt that the supported interac-
tions (expand, highlight and filter) are very “useful and intuitive”. The
detailed information provided by the data flow and support view was
also regarded as “helpful and just what they need”. One participant
liked how he could “locate my hypotheses in the rules and understand
how the model reacts, whether it is right or wrong, and how much
observations in the dataset supports the hypotheses”. However, one
participant had trouble understanding that there is only conjunctive rela-
tion between multiple clauses in a rule. Two participants suggested that
a rule searching function would also be useful in validating hypotheses.

7 DISCUSSION AND CONCLUSIONS

In this work, we presented a technique for understanding classifica-
tion models using rule-based explanations. We preliminarily validated
the effectiveness of the rule induction algorithm on a set of bench-
mark datasets, and the effectiveness of the visual interface, RuleMatrix,
through two use cases and a user study.

Potential Usage Scenarios. We anticipate the application of our
method in domains where explainable intelligence is needed. Doctors
can better utilize machine learning techniques for diagnosis and treat-
ments with clear explanations. Banks can use efficient automatic credit
approval systems while still being able to provide explanations to the
applicants. Data scientists can better explain their findings when they
need to present the results to no-experts.

Scalability of the Visualization. Though the current implementa-
tion of the RuleMatrix can visualize rule lists with over 100 rules with
over 30 features, the readability and understandability have only been
validated on rule lists with less than 60 rules and 20 features. It is un-
clear whether users can still get an overall understanding of the model
from such a complex list of rules. In addition, we used a qualitative
color scheme to encode different classes. Though the effectiveness is
limited to datasets with a limit number of classes, we assume that the
method will be effective in most cases, since most classification tasks
have fewer than 10 classes. It is also interesting to see if the proposed
interface can be extended to support regression models by changing the
qualitative color scheme to sequential color schemes.

Scalability of the Rule Induction Method. An intrinsic limitation
of the rule induction algorithm results from the trade-off between the
fidelity and complexity (interpretability) of the generated rule list. De-
pending on the complexity of the model and the domain, the algorithm
would require a list containing hundreds of rules to approximate the
model with an acceptable fidelity. The interpretability of rules also
depends on the meaningfulness of the input features. This also limits
the usage of our method in domains such as image classification or
speech recognition. Another limitation is the current unavailability of
efficient learning algorithms for rule lists. The SBRL algorithm takes
about 30 minutes to generate a rule list from 200,000 samples and 14
features on server with 2.2GHz Intel Xeon. Its performance does not
generalize well to datasets with an arbitrary number of classes.

Future Work. One limitation of the presented work is that the
method has not been fully validated with real experts in specific do-
mains (e.g., health care). We expect to specialize the proposed method
to meet the needs of specific domain problems (e.g., cancer diagnosis,
or credit approvals) based on future collaborations with domain experts.
Another interesting direction would be to systematically study the ad-
vantages and disadvantages of different knowledge representations (e.g.,
decision trees and rule sets) when considering human understandability.
In other words, would people feel more comfortable with hierarchical
representations (trees) or flat representations (lists) under different sce-
narios (e.g., verifying a prediction or understanding a complete model)?
We regard this work as a preliminary and exploratory step towards
explainable machine learning and plan to further extend and validate
the idea of interpretability via inductive rules.
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