
A SURVEY ON VISUALIZATION FOR
EXPLAINABLE CLASSIFIERS

by

YAO MING

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Classification is a fundamental problem in machine learning, data mining, and computer

vision. In practice, interpretability is a desirable property of classification models (classifiers)

in critical areas, such as security, medicine, and finance. For instance, a quantitative trader

may prefer a more interpretable model with less expected return due to its predictability

and low risk. Unfortunately, the best-performing classifiers in many applications (e.g., deep

neural networks) are complex models whose predictions are difficult to explain. Thus, there

is a growing interest in using visualization to understand, diagnose and explain intelligent

systems in both academia and industry. Many challenges need to be addressed in the formal-

ization of explainability, and the design principles and evaluation of explainable intelligent

systems.

The survey starts with an introduction to the concept and background of explainable

classifiers. Efforts towards more explainable classifiers are categorized into two types: de-

signing classifiers with simpler structures that can be easily understood; developing meth-

ods that generate explanations for already complicated classifiers. Based on the life circle

of a classifier, we discuss the pioneering work of using visualization to improve its explain-

ability at different stages in the life circle. The survey ends with a discussion about the

challenges and future research opportunities of explainable classifiers.

i



CHAPTER 1

INTRODUCTION

1.1 Motivation

Classification is the problem of identifying if an observation or object belongs to a set or not,

or which of several sets. It is a fundamental problem in machine learning, data mining, and

computer vision. With the support of the increasing capacity of computation resources and

the growing volume of available data, the last few decades have witnessed an explosion

of breakthroughs in these fields. Nowadays, classification models (classifiers) are widely

adopted to solve real-world tasks, including face recognition [64], handwriting recognition

[26], sentiment analysis [39] and spam filtering [3]. Take image classification for instance,

a well-designed convolutional neural network can achieve human-level performance in a

number of benchmark datasets [17].

Figure 1.1. An illustration of an explainable image classifier [16].

Despite their promising capabilities, an often-overlooked aspect is the important role of

humans [46]. When humans are to understand and collaborate with these autonomous sys-

tems, it is desirable if we have explanations of their outputs. For instance, a doctor using

a machine classifier to assist in identifying early signs of lung cancer would need to know

why the classifier “thinks” there might be cancer so that he/she can make a more confident

diagnosis. An example is shown in Figure 1.1. In machine learning, the term explainability

1



does not have a standard and generally accepted definition. In some literature, interpretabil-

ity is used instead. Generally speaking, the explainability or interpretability of an intelligent

system refers to the ability to explain its reasoning to humans [10]. For the sake of consis-

tency, we use explainability as the ability to explain in this survey. Interpretability is used to

refer to the property of how easily a model can be understood by humans.

The research for explainable intelligent systems can be traced back to the 1980s when ex-

pert systems were created and proliferated [9, 37, 55]. These early works focused on reduc-

ing the difficulty of maintaining the complicated if-then rules by designing more explainable

representations. A huge gap exists between today’s state-of-the-art intelligent systems and

the techniques that can make them explainable. The new challenges brought about by the

new generation of intelligent systems have attracted growing research interests. DARPA

launched the Explainable Artificial Intelligence (XAI) project [16], which aims to develop

new techniques to make these systems explainable. Google Inc. initiated the People + AI

Research Initiative (PAIR) [15] to advance humanistic considerations in AI.

Visualization is an effective and efficient technique for communicating information and

understanding complex datasets for humans. The visual system is a proxy with a very large

bandwidth to human brains [35]. Thus, visualization can be an ideal weapon to help ex-

plain complicated classifiers to humans. Early related research can be traced back to the

software and algorithm visualization for computer science education in the 1980s and 1990s

[8, 53, 42]. Visualization, especially interactive visualization, was proved to be very effective

in facilitating people’s understanding of complex software and algorithms. Little research

has been done to visualize the increasingly complicated classifiers, which are actually algo-

rithms learned from the data. It has not been until recently that visualization was popu-

larized as a media for understanding classification models, especially for image classifiers

[50, 65, 4, 66]. However, these methods have limited applications to neural networks for

image data. There is also a lack of a unified and convenient evaluation method for the gen-

erated visualizations.

1.2 Challenges

The need for visually explaining classifiers is actually a result of the successes and advances

of AI. The major challenges of visually explaining classifiers results from the complexity of

the model and data, and the limits of humans.

First, it is challenging to explain complex classification models both concisely and pre-

cisely. The best-performing classifiers (e.g., neural networks) are becoming increasingly

2



complex, in terms of the number of parameters and operations they employed, which makes

them difficult to explain. A convolutional network typically employs thousands of neurons

and millions of parameters. A random forest used for classification may employ hundreds

of decision trees, each containing hundreds of nodes. Sampling a small number of parame-

ters/neurons/nodes to explain might be easier to understand for humans, but it brings with

it the risk of misunderstanding as well. The variety of model architectures also increases the

difficulty of designing an effective and general framework for explaining classifiers.

Another challenge is the volume and variety of the data used for training the classifiers.

To explain a classifier, a most common strategy is to trace back to the input data. Which

part of the input data contributes to the prediction? How does a model behave on this

subset of data? Some explanation methods require computations over the entire training

set, which may become impractical if the data set is very large. Different data types may

require different forms of visual explanation. Image data are readily interpretable, but how

to effectively explain classifiers on categorical, text and speech data is still a problem.

These challenges are, to some extent, due to compromises owing to the limits of humans’

cognitive ability. If humans can make sense of the meaning of thousands of parameters and

complex model structures by merely looking at the raw data or code, there is no need to

struggle with how to better visualize them. There are already some studies discussing the

structure, function, and effectiveness of explanations in cognitive science. However, it is still

unclear how we can effectively evaluate the quality of an explanation, and the load that its

visual representations exert over humans.

1.3 Overview

This survey mainly focuses on how visualization techniques can be used to support explain-

able classifiers. In Chapter 3, we first introduce the definition of classification and classifiers,

and the concept of explainable classifiers. Two major research directions towards more ex-

plainable classifiers are identified: designing classifiers that are readily interpretable, and

methods that generate explanations for a classifier without modifying the model. In Chap-

ter 4, we first articulate the life cycle of a classifier into different stages, that is, the recursive

procedures of data collection and processing, model development and testing, and opera-

tions and maintenance. Then, we illustrate how visualization can be applied at different

stages to provide explainability for classifiers. Based on the specified life cycle, we catego-

rize the surveyed literature and discuss the challenges and opportunities for future research

in visualization for explainable classifiers.

3



CHAPTER 2

CONCEPTS AND DEFINITIONS

In this section, we first briefly introduce the problem of classification, as an instance of su-

pervised learning, and a few popular classifications models (classifiers). To clarify the scope

of this survey, we discuss the concepts of explainability of classifiers and illustrate in which

circumstances explainability are desirable or needed.

2.1 Classification

Given an input space X and an output space Y = {1, 2, ...,K} with K classes, classification

is the problem of identifying any observation x ∈ X to a class y ∈ Y. For multi-label clas-

sification, where class labels are not exclusive, we can view it as multiple related binary

classifications. For simplicity, we only consider the basic formulation in this survey.

A classifier is an algorithm f that implements classification, i.e., y = f(x). To handle

ambiguity, a classifier is often used in a probabilistic setting, that is, the output of f is a prob-

abilistic distribution p(y | x,D) over all possible classes in Y. D is the training set, which is a

subset of X×Y, that have already been observed. Thus, in practice, a classifier will often take

the form of y = f(x), where y = (yi) ∈ RK is a vector denoting the probabilistic distribution.

Then the final classification will be the class iwith largest probability arg maxi yi.

2.2 Explainability

What is explainability? What is the explainability of a classifier? There is no commonly

agreed definition so far. Doshi-Velez and Kim define interpretability (or explainability) as

the ability to explain or to present in understandable terms to a human [10], which is already

a good general definition. To clarify the scope of this survey, we define the explainability

of a classifier as the ability to explain the reasoning of its predictions so that a human can

understand. Simple models such as a linear classifier already have good explainability since

humans can easily understand the model’s reasoning by simply looking at the coefficients

of each feature. For a complicated classifier like a deep neural network, a human may find it

difficult to understand due to layer-wise structure and the nonlinearity of the computation.

Thus, the key issue of explainability is the cognitive capability of humans.

4



An immediate question is: why do we need explainability? The need of explainability

for a full automated classifier mainly comes from three aspects: humans’ curiosity about

knowledge, limitations of current intelligent algorithms, and moral and legal issues:

• The curiosity of human. Humans are curious about new knowledge. Often, a classi-

fier is not developed solely for performing the classification tasks, but also for knowl-

edge discovery. For today’s popular neural networks, humans are curious of how the

impressive human-level classification accuracy is achieved. There are also examples

of how insights learned from the behavior of a model lead to improvement on the de-

sign of a classifier [65, 2]. Besides, given that AlphaGo Zero [49] can learn to master

the game of Go much better than human players, it is desirable that the machine can

explain its learned strategy (knowledge) to us.

• Limitations of machines. The current state-of-the-art intelligent systems are usually

not fully testable. Human knowledge is required as a complement in case the ma-

chines fail. In the seeable future, machines are expected to assist rather than replace

humans in many domains, such as security, medical services, education, and design.

By providing explainability, users’ trust can be more easily established. Besides, ex-

plainability can provide an interface for humans to monitor machine.

• Moral and legal issues. The “right to explanation”, which is a regulation included in

the GDPR 1 of the European Union, has recently raised a debate on to which extent

we should require automatic decision-making systems to provide explanations to the

subjects of the decision. If one’s application for a loan is denied by an automatic clas-

sifier, he/she has the right to ask why. A doctor may need to know why a patient is

classified to have a lung cancer to give the final diagnosis. Another issue is the fairness

or the discrimination problem of a classifier, which may be easily neglected during the

development phase.

Though explainability is a desirable property, it should be noted that it is not always

necessary. Explainability is not required if 1) the application domain has high resistance to

errors, and thus, unexpected errors are acceptable; 2) the application domain has been well

studied and the classifier has been well tested in production, and thus, it is unlikely to have

unexpected results.

1https://www.privacy-regulation.eu/en/r71.htm

5

https://www.privacy-regulation.eu/en/r71.htm


CHAPTER 3

EXPLAINABLE CLASSIFIERS

In this section, we discuss methods that provide explainability to classifiers. We categorized

related work into two types depending on how the explainability of a classifier is achieved.

The first type of work develops more interpretable classifiers that are easy to under-

stand for humans. The second generates explanations for a classifier without modifying the

model, either by explaining the classifier locally on specific instances or by explaining the

behavior of the classifier globally. A summary is shown in Table 3.1.

Categories Related Papers Remarks

Interpretable
Classifiers

Interpretable
Architecture

Decision Trees [7],
rule-basedRule Lists [27, 60],

Rule Sets [61]

Linear Models [6] linear

kNNs [12, 22] instance-based

Learning
Sparse
Models

Decision Trees [43],
simplificationSparse SVMs [11],

Sparse CNNs [29]

Sparsity by Bayesian [57],
direct-sparsity

Integer Models [56, 59]

Explanations
of Classifiers

Local

Model-
unaware

Sensitivity Analysis [50, 28, 51] gradient-based

LIME [46] model induction

Generate Visual Explanations [19] extra labels

Model-
aware

De-convolution [65], CNN

Layer-wise Propagation [4], CNN

Prediction Difference [66], Image

Output Decomposition [36], LSTM

Direct Mapping [21] RNN

Global

Unaware Greedy-pick [46], Top-k [65] sampling

Model-
aware

Partition Hidden Space [14, 44], NN

Activation maximization [13, 50], CNN

Network Dissection [5] CNN

Table 3.1. Towards explainable classifiers.

6



Figure 3.1. A decision list learned by the BRL algorithm [27].

3.1 Interpretable Classifiers

Interpretable classifiers are the classifiers that are commonly recognized to be more under-

standable than others, and hence, do not need extra explicit explanations. Summarizing

existing work, we find two major strategies for creating interpretable classifiers: developing

interpretable models with easy-to-understand structures, and learning simpler or sparser

models.

3.1.1 Interpretable Architecture

To create more interpretable classifiers, a natural way is to use simple computation struc-

tures (e.g., if-then rules). Most classifiers that fall into this category are rule-based.

Rule-based. A widely adopted type of models are the decision trees [7]. A decision

tree classifier uses internal nodes and branches to represent its classification reasoning as

conjunctions of rules. A human can trace back a specific classification from a leaf to the

root to understand the prediction of the classifier. However, the difficulty of constructing a

high-accuracy and interpretable decision tree has long been criticized.

Focused on balancing among performance, explainability, and computation, a few re-

cent studies introduce the Bayesian framework in rule-based classifiers. Letham et al. [27]

develop the Bayesian Rule List (BRL) which employs a prior structure that encourages spar-

sity in the generated decision lists with a good accuracy. The rule lists have the form of

if-then-else structures, as shown in Figure 3.1. Wang and Rudin [60] design the Falling Rule

Lists that use an ordered if-then rule list so that the most at-risk occasion will be handled

first. Wang et al. [61] construct rule sets based on AND and OR operations and highlight its

low computation cost and on-par accuracy compared with SVM and random forest.

7



Figure 3.2. A decision tree with over one hundred nodes, which is hard to explain its rea-
soning1.

The most series problem of these interpretable models with easy-to-understand struc-

tures is the scalability. The performance of the rule-based models increases as the number

of rules increases or the non-linearity increases. Although the rule-based models are easy

to learn and understand at the first glance, it is intractable to understand the classifier as a

whole when the number of nodes of rules grows up to a few hundred. An example is shown

in Figure 3.2.

Others. Except for rule-based models, there are a few other models with more compli-

cated models are recognized to be interpretable. One family of interpretable models worth

noticing are the generalized linear models [6], which are pervasive in statistics and finance.

Although these models can have highly nonlinear computations, the additive relation be-

tween nonlinear functions of features is believed to be easy-to-understand. However, the

generalized linear classifiers can also be hard to understand when their non-linearity in-

creased to a certain extent. The other non-probabilistic family of classifiers is the k-nearest

neighbors (kNN) classifiers, whose prediction can be easily understood by presenting the

observation’s k-nearest neighbors. Numerous work has been done to boost the performance

the kNN classifiers, including weighted kNN with different kernels [12] and fuzzy kNN

[22]. The explainability of kNN classifiers may easily fail when there lack good neighbors

for certain observations.

3.1.2 Learning Sparse Models

As discussed above, the explainability often decreases as the complexity (i.e., number of

parameters or nodes) of the model increases. Thus, we can improve the explainability by

learning a sparser model with the same architecture. Two common strategies are used to

learn a sparse model: simplifying a “dense” model through pruning or approximation; in-

troducing sparsity as a prior to learn a sparse model from scratch.

1https://umbrella.cisco.com/blog/2013/06/13/server-side-software-and-malware-analysis/

8

https://umbrella.cisco.com/blog/2013/06/13/server-side-software-and-malware-analysis/


Simplification. The methods for simplifying classifiers are usually developed in a model-

specific manner. Quinlan [43] summarizes four techniques for simplifying decision trees ,

i.e., cost-complexity pruning, reduced error pruning, pessimistic pruning and simplification

to rule sets. Downs et al. [11] recognize and eliminate dependent support vectors while leav-

ing the outputs of SVM unchanged. Liu et al. [29] use a sparse decomposition method to

zero out redundant parameters in a CNN, achieving about 10-times speedup while only los-

ing about 1% accuracy. Though these methods can practically simplify classifiers and speed

up computations, they do not directly provide explainability. A simplified SVM with fewer

support vectors but utilizing a complicated kernel is still difficult to explain. A simplified

decision tree with 200 nodes instead of 1,000 nodes is still hard to interpret.

Learning from scratch. To directly learn sparser models from scratch, Tipping [57] pro-

poses a general Bayesian framework that treats sparsity as a prior and specialized this

method on SVM. Instead of restricting the complexity of the parameters, Tan et al. [56]

uses a 0-1 control variable to each input feature, and convert the learning to a mixed integer

programming problem. The similar idea can be found in the sparse linear integer models

proposed by Ustun et al. [59]. Although these methods can learn sparse classifiers without

losing much performance, they mainly focus on reducing the computation costs instead of

providing explainability. They do not guarantee explainability if the classification problem

is difficult.

In most cases, the efforts of developing more interpretable classifiers are tradeoffs be-

tween performance and explainability. For performance-critical applications, it is always

difficult to train an interpretable classifier that does not need extra explanations.

3.2 Explaining Complex Classifiers

Generating explanations of a classifier without modifying the classifier itself is preferred

when the underlying model is already too complicated, e.g., neural networks and SVMs,

and we don’t want to sacrifice performance. There is also no common-recognized definition

for what an explanation of a classifier is. Most existing work uses a subset or a weighted

subset of input features to explain a single prediction of a classifier, e.g., a mask over the

input image, a heatmap with the same size as the input image, a bag of words or categorical

fields. Some work [46] proposed to induct a simpler classifier (e.g., linear classifier) as the

explanation of a prediction. Here we only discuss explanations for complex classifiers. Thus,

illustrative diagrams for simple classifiers are not included here.

In cognitive science, explanations are characterized as arguments that demonstrating all

9



or a subset of the causes of the explanandum (the subject being explained), usually follow-

ing deductions from natural laws or empirical conditions [18, 33]. Here we give a general

definition:

Explanations of a classifier are the human-understandable representations that identify

the causes of the classifier’s prediction(s). A typical form of human-understandable repre-

sentations is the visualization. As introduced in Section 2.1, a classifier can be regarded as

a function f, which is in general learned from a training dataset D, specified by learned pa-

rameters θ. Thus, the causes can be traced to 1) parts of the training data D, 2) parts of the

parameters θ as some components of the classifier, or 3) parts of the input, x, of a prediction

or predictions.

If an explanation is provided to explain f’s prediction in a small region around a given

input point x, we call it as a local explanation. If it is generated to explain f on the whole

input space X in general or as a summary, we call it as a global explanation. Sometimes,

we also want to have an intermediate subset explanation that is performed on a subset S of

X, in which the inputs share some common features. Next, we discuss the related work on

explanations of classifiers based on the above taxonomy.

3.2.1 Local Explanations

As we have discussed, the causes used in an explanation of a classifier can be the training

data, model parameters, and inputs. For local explanation, the input x is always specified

and used in the explanation. Depending on whether an explanation is generated directly us-

ing model’s parameters or structures, we categorize local explanation methods into model-

aware and model-unaware methods.

Model-unaware explanations only require the input x and a computable f. Most work

uses sensitivity or saliency-based techniques to derive explanations. Simonyan et al. [50]

use the derivative of an image classifier fi w.r.t. the input image x as the saliency score of the

class i, and map the score of each pixel to a saliency map as the explanation of x. Li et al. [28]

also calculate the derivative of a text sentiment RNN classifier w.r.t. the embeddings of an

input sentence (which is a matrix), as shown in Figure 3.4. The heatmap matrices are used

as explanations for users to identify salient dimensions of the embedding vector and salient

words that contribute the most to the prediction. Although these sensitivity-based methods

are intuitive and can be efficiently approximated, their generated explanations are often

noisy (as shown in Figure 3.3), due to the high nonlinearity of the complicated classifier.

Recently, Smilkov et al. [51] propose a random sampling technique to smooth the gradient,

10



Figure 3.3. Images (first row) and their saliency maps (second row) for the top-1 predicted
class in ILSVRC-2013 test images [50].

which achieves more meaningful visual explanations. However, this smoothing technique

is computationally expensive and non-deterministic.

Instead of sensitivity analysis, some other work trains another model to explain the ex-

planandum. Ribeiro et al. [46] approximate a complicated classifier locally using a simple

linear classifier, and proceed to generate super-pixel patches as explanations. This method

is actually similar to the gradient smoothing, since the training of the linear classifier is also

done by sampling around the current input. Forming the problem as image captioning,

Hendricks et al. [19] use extra labeled explanation texts of images to train an explainer that

generates explanatory texts of an image classifier. This method highly depends on the qual-

ity of text explanations labels, which require extra expensive labeling. Besides, it introduces

another model, which is another potential explanandum that needs to explain.

Model-aware explanations utilize another cause – the parameters of the model, θ, to am-

plify the information in the explanation. Zeiler and Fergus [65] develop a de-convolution

method that maps the outputs of a CNN classifier back to the input space, utilizing the

inverse operations of different layers. The projected images Figure 3.5 can be used as an

explanation of what different neurons are used for. Bach et al. [4] use a layer-wise rele-

vance propagation (LRP) that improves the sparsity of the image heatmap. Zintgraf et al.

[66] develop a visualization that highlights evidence for and against a prediction separately

through prediction difference analysis. Murdoch and Szlam [36] decompose the output of

an LSTM classifier into multiplicative contribution scores of input words and uses the scores

11



Figure 3.4. Saliency matrix maps for “I hate the movie I saw last night.” of three RNN
sentiment classifiers. Left: a vanilla RNN; Middle: an LSTM; Right: a bi-directional LSTM
[50].

to explain how important the words are for the prediction. Though these methods typically

result in much better (sparse, meaningful) explanations than model-unaware methods, they

are developed in a per-model manner, which are hard to generalize for other classifiers.

There is a lack of general explanatory frameworks to guide and evaluate the development

of model-aware methods. Flooded by the interest in deep learning, we can hardly find meth-

ods developed for classification models other than neural networks.

Using the cause of training data for explanations has not attracted interest until recently.

Koh and Liang propose a fast approximation of the influence function, which is a well-

studied method in statistics. The influence functions can help identifying training points

that are most responsible for a given prediction [23], and thus can explain the prediction

from the aspect of training data.

3.2.2 Global Explanations

The global explanations are not dependent on any specific inputs. A global explanation is

actually a summary of the reasoning of how a classifier generally behaves. Unlike local ex-

planations which are defined around a certain point, the global explanations are considered

to be ill-posed and are much harder to achieve. Similarly to local explanations, we divide

existing work into model-aware and model-unaware methods.

Model-unaware explanations. To our knowledge, very few methods have been pro-

posed to generate global explanations for general classifiers. Ribeiro et al. [46] select a

collection of representative local explanations and present to the users one local explana-

tion at a time to give a global understanding. This method will easily fail when the dataset

12



Figure 3.5. Visualization of a CNN generated using the de-convolution method [65]. Gray
images in the left are the top nine activations in a random subset of neurons across validation
data, projected back to image space. In the right are corresponding image patches.

(training data) is too large. The users will not be able to remember a lot representative local

explanations to form a global understanding.

Model-aware explanations. The first attempt to understand a complex classifier globally

is done by Féraud and Clérot [14]. They partition the hidden representation space through

clustering the representation of the whole training set, where each cluster represents a se-

mantic concept learned by the classifier. To qualitatively understand a CNN, Erhan et al. [13]

propose the activation maximization method. Each neuron in the CNN can be explained us-

ing an image patch that will maximize its activation. To provide conceptual meanings of the

explanation, Bau et al. [5] align hidden units with human-understandable concepts (objects)

through a dissection process. However, these methods often require explorations over mul-

tiple nodes or neurons. The big picture is often neglected. Additionally, a common issue is

that it is hard to compare these methods due to the lack of an evaluation framework.

In summary, there are two common strategies to make a classifier explainable. First, we

develop simpler or sparser classifiers that can meet the performance requirements. Second,

13



we build another human-understandable interface for explanation on top of a classifier. Both

strategies are useful in different scenarios.

However, an important, but neglected aspect of existing methods is the human. Few

have paid attention to model human. Most of them study the classifiers and develop tech-

niques for explainability and then argue that their methods help humans to understand the

classifier, without studying how humans exactly response to the results generated by these

techniques.

Another related problem raised by Doshi-velez and Kim [10] is the lack of the evalua-

tion methods for explainability. Without a rigorous evaluation, it is hard to compare which

method is better in a certain setting. It will also be infeasible to clarify the gap of current

research and direction for future research.

14



CHAPTER 4

VISUALIZATION FOR EXPLAINABLE
CLASSIFIERS

As discussed at the end of Chapter 3, current research only focuses on one subject of the

problem of explainable classifier and neglects the other subject – human. Thus, we study

explainable classifier from the aspects of visualization and human computer interaction in

this chapter. Broadly speaking, the visualization for explainable classifiers can be viewed

as a special case of algorithm visualization or software visualization. The former aims to

provide better understanding of algorithms for education purposes in computer science.

The latter focus on assisting developers and operation engineers for the development and

maintenance of complex software. Here, the subject of visualization is the classifiers, which

can be treated as algorithms learned from the data, or complex systems that need assistance

in understanding.

We view the development and the operation of an intelligent system as a system engi-

neering problem, and divide the life cycle of an intelligent system into different stages. The

classification system can be treat as a specification of the general intelligent system. Then,

we identify the current issues in explaining classifiers and discuss the research opportunities

of visualization regarding different stages.

4.1 Life Cycle of an intelligent system

OperationModel Development

Problem
De�nition

Data Engineering

Analysis Preparation OperationDeploymentArchitecture EvaluationTrainingCollection

Figure 4.1. The life cycle of a classifier.

15



A classification system can be thought as a specialized case af an intelligence system. An

intelligent system is developed to perform certain tasks with artificial intelligence (here we

only consider data-driven systems). The development of a data-driven intelligent system is

an iterative process. In this survey, the entire life cycle of an intelligent system is divided into

three major stages (data engineering, model development, and operation) and eight sub-

procedures (see Figure 4.1). This definition is formed based on the cross-industry standard

process for data mining [62], a professional advice from Gartner, Inc. [48], the life cycle for

expert system [25], and the machine learning workflow of Google Cloud1.

The first stage, data engineering, is defined to include any procedures that are data-

related, namely, data collection, exploratory analysis, data preparation. The second stage,

model development, includes procedures such as designing the architecture of the classifier

(e.g., what type of model to use and parameters), training the model using data prepared,

and evaluating whether the model meets certain requirements. After developing a classifier,

the model is deployed, and in certain cases, is operated by some people. As we can see from

Figure 4.1, there are back-links from each stage/step to its previous stages/steps. This is

the nature development. For example, we have a model with unsatisfactory performance

after the training. This might due to model used is not suitable for certain tasks (go back to

architecture setting), or it is because the volume of the data is too small (go back to collect

more data). Similar problems might occur in other stages or procedures, which force us to

go back and improve.

Visualization and visual analytics systems are semi-automatic solutions at different stages

to make a classifier more explainable. In the stage of data engineering, data visualization can

help humans explore the data and get a qualitative sense of the nature of the data. Since the

training of a classifier is actually extracting information from the training data, with more

knowledge of the data in mind, humans (i.e.developers or data scientists) can better un-

derstand if a failure results from the quality or volume issues of the data. At the second

stage, visual analytics systems serve as development tools, which make the development

more transparent and understandable. When designing or selecting model architectures,

visual analytics systems can help humans better understand the characteristics of different

classifiers, and even inspire improvements in the architecture. Visual diagnosing tools can

help identify the problems in the training process and improve the debugging efficiency. For

evaluations, visual analytics systems can help compare different classifiers and qualitatively

evaluate the robustness and fairness of a classifier. At the last stage, when a classification

system is deployed, visualization can help explain the inner workings of the system to end-

1https://cloud.google.com/ml-engine/docs/ml-solutions-overview

16

https://cloud.google.com/ml-engine/docs/ml-solutions-overview


users. For routine operations, visualization can better explain the predictions of the system,

which make the monitoring and management easier. Also note that, visualization can used

in the life-cycle for other purposes instead of explainability. For example, monitoring the

training process by plotting loss curves, or visualization for crowd sourcing to collect data

with better quality.

4.2 Visualization for Exploratory Data Analysis

In the stage of data engineering, visualization can be used mainly in the procedure of data

analysis to assist humans’ understanding of the data. Data plays an important role in the

success of machine learning advances. A trained classifier can be viewed as a machine that

has extracted the information in the training data and abstracted the information as its pa-

rameters. Different classifiers are suitable for datasets with different characteristics. Besides,

a classifiers performance is largely depend on the quality of its training data. Thus, under-

stand the data is the first step to understand a classifier.

There is a long history of research in visualization for exploratory data analysis. When

comes to the classification problem, the data involved is multi-dimensional data with cat-

egorical labels, usually having the type of images, texts and categorical data. There are

mainly three tasks: statistical analysis, dimensionality reduction, and dataset diagnostics.

Statistical analysis. The purpose of statistical analysis is to summarize statistical fea-

tures of the datasets and provide users with a statistical understanding. One of the most

influential visualization design is the box plot, which summarizes the key statistics of each

feature in a box-like visualization. A survey on the design of box plots is provided by Potter

et al. [41]. As shown Figure 4.2, (a) presents the key features of a box plot. The box plots can

be enhanced to embed more information such as confidence intervals in (e) and distribution

densities in (f-i), providing more comprehensive summaries than the simple box plot. How-

ever, the datasets used in classification systems have become increasingly complex, with

very high dimensions. Navigating through hundreds of box plots not necessarily provide

insights about the datasets.

Dimensionality reduction. In exploratory analysis, dimensionality reduction is usually

applied for understanding how the data is distributed in the input space. Thus, projection,

including principle component analysis (PCA), multidimensional scaling (MDS) [24], and t-

distributed stochastic neighbor embedding (t-SNE) [34], is the most common dimensionality

reduction technique used in this stage. The role of visualization is to present and augment

the results of dimensionality reduction. A most recent example is the Embedding Projector

17



Figure 4.2. Variations on the box plot [41]. a) Abbreviated box plot. b) Range plot. c) Box
plot. d) Interquartile plot. e) Variable width and notched box plots expressing sample sizes
and confidence levels. f) Hist plot. g) Vase plot. h) Box-percentile plot. i) Violin plot. j) Skew
and modality plots.

[52], which embed human interpretable labels (e.g., images with categorical colors ) in the

scatter plots achieved by dimensionality reductions. By navigating the projected plot, users

can better understand the relationship of different instances and identify clusters and out-

liers. For example, as shown in Figure 4.3, we can see that digits “3”, “5” and “8” are actually

very close to each other, and the classifier might have difficulties to distinguish them.

Dataset diagnostics. Diagnostics is an important and comprehensive task for improving

the quality of the dataset. Given that different datasets usually have different characteristics,

there is few automatic methods that can solve all the problems. Thus, human is required to

be in the loop. The visualization techniques involved may vary for different datasets. Most

commonly used are scatter plots, stacked diagrams, and their variations. An example visual

dataset diagnostics tool for machine learning is the Facets2.

As discussed above, visualization techniques can help users develop understandings of

the distribution, characteristics, and possible challenges of the datasets. These insights can

guide the implementation and evaluation in the second stage of model development. In this

sense, it is easier for developers to understand the behavior of classifiers, which makes the

2https://github.com/PAIR-code/facets

18

https://github.com/PAIR-code/facets


Figure 4.3. The t-SNE projection of the MNIST dataset, colored by the labeled digits.

classification system more explainable.

There are two research issues for visualization in the stage of data engineering. The first

is the scalability issue. The volume of datasets can be very large (e.g., millions of instances),

which brings about challenges in real-time visualization rendering and interaction designs.

The second is the lack of comprehensive visual analytics system that are designed specif-

ically for the development of intelligent systems. A developer will have to switch among

different tools to perform different tasks, which need a lot of redundant work for format

transformations.

4.3 Visualization for Model Development

There is a surge of interest to use visualization in the stage of model development for ex-

plainable classifiers. We summarized three tasks for visualization, namely, model under-

standing, model diagnosing, and assessment and comparison, which are corresponding to

the three stages: architecture design, training, and evaluation.

19



Figure 4.4. Projection of the MLP hidden layer activations after training [44], SVHN test
subset. a) First hidden layer. b) Last hidden layer.

4.3.1 Understanding

The purposes of this task is to help researchers and developers better understand the char-

acteristics and working mechanisms of different classifiers so that they can design a better

one or choose a better one. The selection and design of the architecture of a classifier al-

ways require a strong expertise in machine learning, which needs cumulative experience

of trial and error. For classifiers whose characteristics are still under studying (e.g., neural

networks), such knowledge is even harder to achieve. Thus, most of the related work us-

ing visualization techniques for understanding classifiers focuses of neural networks. Con-

sidering the taxonomy of explanations, these visualizations mostly fall into model-aware

global explanations, which provide a general sense of how a classifier behaves globally. Un-

like pure explanation generation techniques, the visual analytics systems often embed extra

information of the classifiers that boost understanding. These techniques can be roughly

categorized into two: representation-based and component-based.

20



Figure 4.5. A spam classifier, where each input is a term in the email. The input data of the
network is a subset of the spam in the training set [58].

Representation-based methods visualize how a given set of instances is represented in

the hidden layer or the final output of the classifier. As shown in Figure 4.4, Rauber et al. [44]

project the representations of a subset of instances in different layer, and verified that each

layer of the network transform its input space to a more separable one. Unlike component-

based methods, representation-based methods actually treat a model or a layer as a black

box, and visualize how the representation space is transformed. This technique has been

integrated in visual diagnostics systems such as ActiVis [20] and DeepEyes [40]. However,

they are unable to analyze the detail information embedded in the classifiers.

Component-based methods visualize the working mechanisms of specific components

of a classifier. Tzeng and Ma directly visualize a multi-layer perceptron as a graph using the

node-link layout. As shown in Figure 4.5, though this visualization explained how impor-

tant different term are for the neural network, it is visually cluttered and cannot reveal how

neurons are combined to perform the classification. To provide more scalable visualization,

Liu et al. develop the CNNVis [32], which use clustering and edge aggregation to provide a

more compact visualization for CNNs. The representative image patch that activating each

neuron clusters are also embedded in the visualization (see Figure 4.6). There is also some

work using visualization to understand RNNs. Karpathy et al. [21] visualize the value of a

hidden unit along a sequence as a heatmap and find some hidden units have clear semantics.

Strobelt et al. [54] develop the LSTMVis based on parallel coordinates to identify dynamic

patterns in the hidden state of an RNN. Ming et al. [38] develop the RNNVis, which is based

on co-clustering and word clouds, and find that the hidden units can form semantics clusters

from the text data.

These visualization techniques are proved to be able to provide insights and useful ex-

21



Figure 4.6. A visualization of a CNN with a large number of layers and neurons using
neuron clustering and edge aggregation [32].

planations of different classifiers. However, they are developed in a model-specific manner,

which means they are difficult to generalize as common knowledge. There is also a lack of

a unified process to visually analyze and understand a classifier, and a more rigorous mea-

surement of how well a visualization helps explain the characteristics of a complex classifier.

4.3.2 Diagnosis

The diagnosis in the stage of model development mainly includes two parts: code diagnosis,

and training diagnosis. Note that the diagnosis does not contribute to the explainability of

a classifier directly. However, they can be thought to enhance the explainability of the code

and training process of a classifier. Besides, the training difficulty varies as the architecture

changes, which is also a part of characteristics of a classifier.

Code diagnosis. Wongsuphasawat et al. [63] design and implemented a scalable graph

layout for the data flow graph of any machine learning model and integrate the graph vi-

sualization in TensorFlow (see Figure 4.7). The code defining the data flow graph can be

automatically converted to a visualization, which helps developers validate the correctness

of the code. A similar computation graph overview is proposed in the ActiVis, a visual

exploration system for machine learning models developed by Kahng et al. [20].

22



Figure 4.7. The TensorFlow Graph Visualizer shows a CNN image classifier [63]. (a) An
overview displays a dataflow between groups of operations, with auxiliary nodes extracted
to the side. (b) Expanding a group shows its nested structure.

Training diagnosis. There are also visual analytics systems developed to understand the

training process of specific models. Unlike standard testing for software engineering, there

is no accurate definition of the failure of a training. The failure of a training is a relative con-

cepts. It is difficult to determine if a high loss is due to local optimum, the limitation of the

model, or the quality of the dataset. Providing visual hints or indicator can help developers

identify possible cause of failed training. The diagnosis of the training process is usually

provided by sampling multiple snapshots during training. Liu et al. [30] develop the DGM-

Tracker, which tracks the training process of the deep generative models (DGM) (e.g., gen-

erative adversarial model). They cache the training dynamics (e.g., activation changes) and

visualize the training dynamics to help identify possible cause of a failed training. Pezzotti

et al. [40] proposed a progressive method that support the identification of layers that learn

stable patterns and superfluous filters or layers. Visual analytics systems are also proved

to be useful for tree boosting methods [31]. These visual analytics system are also model-

specific and are difficult to generalize. There still needs further research in understanding

the characteristics of the loss function to guide better the development of visualization tech-

niques for training diagnosis.

23



Figure 4.8. Squares [45] displaying the performance of two classifier (top: random forest,
bottom: SVM) trained on the MNIST dataset. They yield the same accuracy of 0.87 , but
show vastly different score distributions.

4.3.3 Assessment and Comparison

The purpose of evaluation is to determine if a trained classifier meets certain standards for

deployment, and to select the best one among multiple classifiers. The evaluation is, to some

extent, closely related to the training diagnostics. If a classifier fails the evaluation, then we

will go back to adjust parameters for another training or refine its architecture. Visualization

can also be used to assess and compare the performance of classifiers comprehensively (e.g.,

identify which classes the classifier is not good at). The visualization here also provide

certain level of global explanations – explaining a classifier using the statistics of its outputs

of the test data.

Amershi et al. [1] develop the ModelTracker to support the interactive performance anal-

ysis for binary classifier using stacked diagram. The ModelTracker combines the perfor-

mance statistics and data inspection functions, which helps engineers evaluate the perfor-

mance and identify problematic classifications at the same time. Ren et al. extend it to the

Squares [45], which support the performance analysis for multi-class classifiers. As shown

in Figure 4.8, the Squares is used to compare the performance of two classifiers, a random

forest and an SVM, on the MNIST dataset. We can easily see that the SVM has much higher

confidence than the random forest, though they have the same accuracy.

Currently, most evaluations only address accuracy and computation cost. As discussed

in Chapter 2, we may need to meet other requirements such as fairness, robustness and

explainability in certain applications. As discussed above, visualization can be used to en-

24



Figure 4.9. A visualization from MLDemos, showing the decision space of a binary SVM
classifier using RBF kernel. White and red denotes different classes, and black represents
uncertainty.

hance the explainability of a complex classifier. By explaining the reasoning of the classifier,

we can identify possible discriminate classifications of the model. It is also possible to quali-

tatively evaluate the robustness of the classifier by verify if the classifier’s reasoning matches

that of a human or it is using unexpected reasoning.

Except for the issues stated above, there are three general research issues for visualization

in the model development stage. The first issue is the scalability of the visualization design.

Many visualizations perform well in toy datasets such as MNIST. However, they will easily

become overwhelming if the number of classes increases to a few hundreds. The second

is the lack of consensus in the evaluation. The target of these visualization techniques is

explaining and understanding, which is also subjective. It is difficult to design appropriate

evaluation tasks for users to perform. The third is the need for a comprehensive toolkit that

covers different procedures fluently. For example, TensorBoard3 is a toolkit for visualizign

and debugging machine learning models, which has been closely integrated in TensorFlow,

but it is still at an early stage and has a limited set of functions.

4.3.4 Communication and Education

Another related task, although not a necessary one in the model development stage, is the

communicating and teaching of classification models. This task is related to the task of

understanding. However, the focus of this task is not for a better understanding of the

working mechanisms of a classifier, but for a better presentation of a classifier.

3https://github.com/tensorflow/tensorboard

25

https://github.com/tensorflow/tensorboard


With the growing complexity of model architectures, it often requires much effort to

understand the composition and computation steps of a new classifier. It also requires a lot

of work from the author to draw a diagram, which may neglect useful information for the

readers. Netscope4 is a visualization tool that converts the code of a model written in Caffe5

to a node-link graph. Which helps quickly understand the topology of a model. However,

the visualization will become too large if the model is complex (e.g., a CNN with a hundred

layers), and it does not show extra information (e.g., optimizing method) about the model.

TensorBoard utilizes the data flow graph visualization developed by Wongsuphasawat [63],

which is interactive and more scalable.

For new comers who want to learn, there will also be a large overhead to understand

the computation of different components. Some visualizations have been developed to help

people learn. Basilio Noris develops a visualization tool, MLDemos6 for understanding the

behavior of various machine learning algorithms. As shown in Figure 4.9, MLDemos maps

the output of a classifier using multiple colors back to the input space, and helps people

learn the characteristics of different classifiers. Tensorflow Playground7 is an interactive vi-

sualization, which helps people understand the behavior of a neural network, using similar

techniques.

4.4 Visualization for Operation

The operation and management after deploying a classification system is an important stage

of the whole life cycle, but little attention has been paid to this stage. There are two common

tasks that needs explainability: trust establishment and inspection.

4.4.1 Trust Establishment

The first challenge after the classifier has been deployed is how to establish users’ trust in the

machine. Ribeiro et al. [46] have discussed the importance of a user’s trust: if the user does

not rust a model, he/she will not use it. If a user understand why the classifier predict class

A but not B, if he/she understand when the classifier performs well and when it is likely to

fail, if he/she can figure out the possible reasons for a failure, he/she will trust the classifier.

Thus, the foundation of trust is understanding, which can be achieved through explanation.

4http://ethereon.github.io/netscope

5http://caffe.berkeleyvision.org/

6http://mldemos.epfl.ch/

7http://playground.tensorflow.org/

26

http://ethereon.github.io/netscope
http://caffe.berkeleyvision.org/
http://mldemos.epfl.ch/
http://playground.tensorflow.org/


Ribeiro et al. designed a inspiring solution for explanation, that is, locally approximate the

complex classifier using an interpretable one, a linear classifier. Then the linear classifier is

used to generate a local explanation (e.g., a list of words for a document classifier). Although

this method introduces another classifier, whose error is not guaranteed, they showed that

users indeed have more confident and trust in the classifier. Though explanation for trust

establishment is promising, there are still unsolved issues. How to make sure the generated

explanation is fidel to the model? How to evaluate whether the user has learned the correct

message from the explanation? These should be addressed in future research.

4.4.2 Monitoring

After the end-users have established their trust in a classifier, they still needs a human-

friendly interface to inspect or monitor the classifier. This need can be satisfied by providing

faithful local explanations for specific predictions. The need for monitoring is not solely

for preventing possible failure. For example, if we have developed a system for hospitals to

detect early signs of lung cancer from CT scans, a good explanation not only helps the doctor

correct possible false positives, but also provide the doctor extra information for deciding

whether further examinations are needed.

27



CHAPTER 5

CONCLUSION

Explainability is a critical but often-overlooked property for intelligent systems. In this sur-

vey, we review techniques that provide explainability to classifiers, with a special focus on

visualization. We first discuss the concept and definition of explainability of a classifier. Two

types of techniques that provide explainability to classifiers are summarized and discussed.

Then based on the life cycle of intelligent systems, we discuss the role of visualization in

different stages, and how visualization can be used to improve explainability.

The research in the explainability of classifiers is still a growing discipline. There is no

consensus on the definition of explainability in the context of supervised learning. There

is few rigorous evaluation methods of the explainability of a classifier or a explanation of

a classifier. Early work treats the explainability as the “simplicity” and always focuses on

balancing the trade-offs between performance and simplicity. Now there is a new trend of

building an explanatory interface between human and the underlying model to enhance

explainability while maintaining the performance. A few challenges and research issues are

summarized as follows.

Rigorous theory of explainability. There are plenty of unsolved questions in the the

seemly intuitive concept of explainability. How to rigorously define explainability in the

context of machine learning or artificial intelligence? What is explanation? How to evaluate

whether an explanation is good or not? How can we model the variation and uncertainty

of human in the explanatory interface? Based on the theory of explainability, a further issue

that needs to address is the evaluation of explainability and the quality of explanations. If a

metric based evaluation is inapplicable, there still need guidelines for system designs. There

is some work in cognitive science studying the function, structure of explanation, and the

role that explanation plays in perception, cognition, and learning. It may be promising to

learn from the theories from cognition science [47]. Still, it requires the efforts from both

cognitive science and computer science.

Applications. Theory comes from practice. Although there are toy examples, showing

how explainability helps design better models, avoid possible bias, and enhance users’ trust,

we still lack knowledge on the design challenges of a explainable interface in real-world ap-

plications. Is it possible to let the machine explain its learned knowledge to a human? There

28



are few successes or failures in real-world applications that we can learn from. Another ne-

glected stakeholder is the end-users who actually use or are influenced by the technology

developed based on AI. How do they value explainability during the use of an intelligent

system? How can we use explanatory techniques to improve their using experience? The

research at this end might be able to impact more people.

29



BIBLIOGRAPHY

[1] ModelTracker: Redesigning Performance Analysis Tools for Machine Learn-

ing. ACM âĂŞ Association for Computing Machinery, April 2015.

[Online]. Available: https://www.microsoft.com/en-us/research/publication/

modeltracker-redesigning-performance-analysis-tools-for-machine-learning/

[2] B. Alsallakh, A. Jourabloo, M. Ye, X. Liu, and L. Ren, “Do convolutional neural net-

works learn class hierarchy?” IEEE Transactions on Visualization and Computer Graphics,

vol. PP, no. 99, pp. 1–1, 2017.

[3] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D. Spyropoulos,

“An evaluation of naive bayesian anti-spam filtering,” arXiv preprint cs/0006013, 2000.

[4] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-

wise explanations for non-linear classifier decisions by layer-wise relevance propaga-

tion,” PLOS ONE, vol. 10, no. 7, p. e0130140, 2015.

[5] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network dissection: Quan-

tifying interpretability of deep visual representations,” in Computer Vision and Pattern

Recognition, 2017.

[6] K. D. Bock, K. Coussement, and D. V. den Poel, “Ensemble classification based on gen-

eralized additive models,” Computational Statistics & Data Analysis, vol. 54, no. 6, pp.

1535 – 1546, 2010.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees.

CRC press, 1984.

[8] M. H. Brown, “Algorithm animation,” Ph.D. dissertation, Providence, RI, USA, 1987,

uMI Order No. GAX87-15461.

[9] W. Clancey, “The epistemology of a rule-based expert system: A framework for expla-

nation,” Stanford, CA, USA, Tech. Rep., 1981.

[10] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine

learning,” arXiv, 2017. [Online]. Available: https://arxiv.org/abs/1702.08608

[11] T. Downs, K. E. Gates, and A. Masters, “Exact simplification of support vector solu-

tions,” Journal of Machine Learning Research, vol. 2, no. Dec, pp. 293–297, 2001.

30

https://www.microsoft.com/en-us/research/publication/modeltracker-redesigning-performance-analysis-tools-for-machine-learning/
https://www.microsoft.com/en-us/research/publication/modeltracker-redesigning-performance-analysis-tools-for-machine-learning/
https://arxiv.org/abs/1702.08608


[12] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. SMC-6, no. 4, pp. 325–327, April 1976.

[13] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer features of

a deep network,” University of Montreal, Tech. Rep. 1341, Jun. 2009, also presented at

the ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.

[14] R. Féraud and F. Clérot, “A methodology to explain neural network classification,”

Neural Netw., vol. 15, no. 2, pp. 237–246, Mar. 2002.

[15] Google Inc. (2017) PAIR | people + ai research initiative. [Online]. Available:

http://ai.google/pair

[16] D. Gunning, “Explainable artificial intelligence (XAI),” Defense Advanced Research

Projects Agency (DARPA), 2017.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.

770–778.

[18] C. Hempel and P. Oppenheim, “Studies in the logic of explanation,” Philosophy of Sci-

ence, vol. 15, no. 2, pp. 135–175, 1948.

[19] L. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell,

“Generating visual explanations,” CoRR, vol. abs/1603.08507, 2016. [Online].

Available: http://arxiv.org/abs/1603.08507

[20] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau, “Activis: Visual exploration

of industry-scale deep neural network models,” IEEE Transactions on Visualization and

Computer Graphics, vol. PP, no. 99, pp. 1–1, 2017.

[21] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding recurrent net-

works,” in International Conference on Learning Representations (ICLR) Workshop, 2016.

[22] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 4, pp. 580–585, July 1985.

[23] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,”

in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings

of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. International

Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1885–1894.

31

http://ai.google/pair
http://arxiv.org/abs/1603.08507


[24] J. B. Kruskal and M. Wish, Multidimensional scaling. Sage, 1978, vol. 11.

[25] A. J. La Salle and L. R. Medsker, “The expert system life cycle: What have we learned

from software engineering?” in Proceedings of the 1990 ACM SIGBDP Conference on

Trends and Directions in Expert Systems, ser. SIGBDP ’90. New York, NY, USA: ACM,

1990, pp. 17–26.

[26] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and

L. D. Jackel, “Handwritten digit recognition with a back-propagation network,” in Ad-

vances in neural information processing systems, 1990, pp. 396–404.

[27] B. Letham, C. Rudin, T. McCormick, and D. Madigan, “Interpretable classifiers using

rules and bayesian analysis: Building a better stroke prediction model,” Ann. Appl.

Stat., vol. 9, no. 3, pp. 1350–1371, 09 2015.

[28] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding neural models

in nlp,” in Proceedings of the 2016 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies. San Diego, California:

Association for Computational Linguistics, June 2016, pp. 681–691.

[29] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse convolutional neural

networks,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2015, pp. 806–814.

[30] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training processes of deep

generative models,” IEEE Transactions on Visualization and Computer Graphics, vol. PP,

no. 99, pp. 1–1, 2017.

[31] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu, “Visual diagnosis of tree boosting

methods,” IEEE Transactions on Visualization and Computer Graphics, vol. PP, no. 99, pp.

1–1, 2017.

[32] S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards better analysis of machine learning mod-

els: A visual analytics perspective,” Visual Informatics, vol. 1, no. 1, pp. 48 – 56, 2017.

[33] T. Lombrozo, “The structure and function of explanations,” Trends in Cognitive Sciences,

vol. 10, no. 10, pp. 464 – 470, 2006.

[34] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learn-

ing Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[35] T. Munzner, Visualization analysis and design. CRC press, 2014.

32



[36] W. J. Murdoch and A. Szlam, “Automatic rule extraction from long short term memory

networks,” in International Conference on Learning Representations (ICLR), 2017.

[37] R. Neches, W. Swartout, and J. Moore, “Enhanced maintenance and explanation of ex-

pert systems through explicit models of their development,” IEEE Transactions on Soft-

ware Engineering, vol. SE-11, no. 11, pp. 1337–1351, Nov 1985.

[38] U. H. M. of Recurrent Neural Networks, “Yao ming and shaozu cao and ruixiang zhang

and zhen li and yuanzhe chen and yangqiu song and huamin qu.” in Proceedings of the

IEEE Conference on Visual Analytics Science and Technology, 2017.

[39] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using ma-

chine learning techniques,” in Proceedings of the ACL-02 conference on Empirical methods

in natural language processing-Volume 10. Association for Computational Linguistics,

2002, pp. 79–86.

[40] N. Pezzotti, T. HÃűllt, J. v. Gemert, B. P. F. Lelieveldt, E. Eisemann, and A. Vilanova,

“Deepeyes: Progressive visual analytics for designing deep neural networks,” IEEE

Transactions on Visualization and Computer Graphics, vol. PP, no. 99, pp. 1–1, 2017.

[41] K. Potter, J. Kniss, R. Riesenfeld, and C. R. Johnson, “Visualizing summary statistics

and uncertainty,” in Proceedings of the 12th Eurographics / IEEE - VGTC Conference

on Visualization, ser. EuroVis’10. Chichester, UK: The Eurographs Association

&#38; John Wiley &#38; Sons, Ltd., 2010, pp. 823–832. [Online]. Available:

http://dx.doi.org/10.1111/j.1467-8659.2009.01677.x

[42] B. Price, I. Small, and R. Baecker, “A taxonomy of software visualization,” vol. ii. IEEE

Publishing, 1992, pp. 597–606.

[43] J. R. Quinlan, “Simplifying decision trees,” International journal of man-machine studies,

vol. 27, no. 3, pp. 221–234, 1987.

[44] P. E. Rauber, S. G. Fadel, A. X. FalcÃčo, and A. C. Telea, “Visualizing the hidden activity

of artificial neural networks,” IEEE Transactions on Visualization and Computer Graphics,

vol. 23, no. 1, pp. 101–110, Jan 2017.

[45] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares: Supporting interactive

performance analysis for multiclass classifiers,” IEEE Transactions on Visualization and

Computer Graphics, vol. 23, no. 1, pp. 61–70, Jan 2017.

33

http://dx.doi.org/10.1111/j.1467-8659.2009.01677.x


[46] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should i trust you?": Explaining the

predictions of any classifier,” in Proceedings of the 22Nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2016, pp.

1135–1144.

[47] S. Ritter, D. G. T. Barrett, A. Santoro, and M. M. Botvinick, “Cognitive psychology

for deep neural networks: A shape bias case study,” in Proceedings of the 34th

International Conference on Machine Learning, ser. Proceedings of Machine Learning

Research, D. Precup and Y. W. Teh, Eds., vol. 70. International Convention Centre,

Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 2940–2949. [Online]. Available:

http://proceedings.mlr.press/v70/ritter17a.html

[48] C. Sapp. (2017) Preparing and architecting for machine learning. [Online]. Available:

https://www.gartner.com/doc/3573617/preparing-architecting-machine-learning

[49] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,

T. Graepel, and D. Hassabis, “Mastering the game of go without human knowledge,”

Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[50] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Vi-

sualising image classification models and saliency maps,” in International Conference on

Learning Representations (ICLR) Workshop, 2014.

[51] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg, “Smoothgrad: remov-

ing noise by adding noise,” CoRR, vol. abs/1706.03825, 2017.

[52] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viégas, and M. Wattenberg, “Em-

bedding projector: Interactive visualization and interpretation of embeddings,” arXiv

preprint arXiv:1611.05469, 2016.

[53] J. T. Stasko, “Tango: a framework and system for algorithm animation,” Computer,

vol. 23, no. 9, pp. 27–39, Sept 1990.

[54] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “Lstmvis: A tool for visual anal-

ysis of hidden state dynamics in recurrent neural networks,” IEEE Transactions on Visu-

alization and Computer Graphics, vol. PP, no. 99, pp. 1–1, 2017.

[55] W. Swartout, C. Paris, and J. Moore, “Explanations in knowledge systems: design for

explainable expert systems,” IEEE Expert, vol. 6, no. 3, pp. 58–64, June 1991.

34

http://proceedings.mlr.press/v70/ritter17a.html
https://www.gartner.com/doc/3573617/preparing-architecting-machine-learning


[56] M. Tan, L. Wang, and I. W. Tsang, “Learning sparse svm for feature selection on very

high dimensional datasets,” in Proceedings of the 27th International Conference on Machine

Learning (ICML-10), 2010, pp. 1047–1054.

[57] M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,” Journal of

machine learning research, vol. 1, no. Jun, pp. 211–244, 2001.

[58] F. Y. Tzeng and K. L. Ma, “Opening the black box - data driven visualization of neural

networks,” in VIS 05. IEEE Visualization, 2005., Oct 2005, pp. 383–390.

[59] B. Ustun and C. Rudin, “Supersparse linear integer models for optimized medical scor-

ing systems,” Machine Learning, vol. 102, no. 3, pp. 349–391, Mar 2016.

[60] F. Wang and C. Rudin, “Falling Rule Lists,” in Proceedings of the Eighteenth International

Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning

Research, G. Lebanon and S. V. N. Vishwanathan, Eds., vol. 38. San Diego, California,

USA: PMLR, 09–12 May 2015, pp. 1013–1022.

[61] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille, “A bayesian

framework for learning rule sets for interpretable classification,” Journal of Machine

Learning Research, vol. 18, no. 70, pp. 1–37, 2017.

[62] R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model for data mining,”

in Proceedings of the 4th international conference on the practical applications of knowledge

discovery and data mining, 2000, pp. 29–39.

[63] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. ManÃl’, D. Fritz, D. Krish-

nan, F. B. ViÃl’gas, and M. Wattenberg, “Visualizing dataflow graphs of deep learning

models in tensorflow,” IEEE Transactions on Visualization and Computer Graphics, vol. PP,

no. 99, pp. 1–1, 2017.

[64] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition

via sparse representation,” IEEE transactions on pattern analysis and machine intelligence,

vol. 31, no. 2, pp. 210–227, 2009.

[65] M. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-

12, 2014, Proceedings, Part I, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham:

Springer International Publishing, 2014, pp. 818–833.

35



[66] L. Zintgraf, T. Cohen, T. Adel, and M. Welling, “Visualizing deep neural network deci-

sions: Prediction difference analysis,” in International Conference on Learning Representa-

tions (ICLR), 2017.

36


	Abstract
	Chapter 1 Introduction
	Motivation
	Challenges
	Overview

	Chapter 2 Concepts and Definitions
	Classification
	Explainability

	Chapter 3 Explainable Classifiers
	Interpretable Classifiers
	Interpretable Architecture
	Learning Sparse Models

	Explaining Complex Classifiers
	Local Explanations
	Global Explanations


	Chapter 4 Visualization for Explainable Classifiers
	Life Cycle of an intelligent system
	Visualization for Exploratory Data Analysis
	Visualization for Model Development
	Understanding
	Diagnosis
	Assessment and Comparison
	Communication and Education

	Visualization for Operation
	Trust Establishment
	Monitoring


	Chapter 5 Conclusion
	Bibliography

